Browse > Article
http://dx.doi.org/10.15230/SCSK.2018.44.4.437

Development of Novel Sulforaphane Contained-composition to Increase Antioxidant and Whitening Effects  

Lee, Ji Hye (Gragem Co., Ltd.)
Choi, Kang Hyun (Gragem Co., Ltd.)
Park, Young Kum (Gragem Co., Ltd.)
Kim, Eung-Gook (Department of Biochemistry, College of Medicine, Chungbuk National University)
Shin, Eun-Young (Department of Biochemistry, College of Medicine, Chungbuk National University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.44, no.4, 2018 , pp. 437-445 More about this Journal
Abstract
In this study, we analyzed two components, sulforaphane and PF-3758309 to prove that the mixed composition of them has more effective antioxidant and whitening functions compared to each component. We analyzed the cellular toxicity of each component and also the mixed composition to find the safe concentration level for cell viability. From the single component treatment, we discovered that sulforaphane was safe up to $10{\mu}M$, and PF-3758309 up to 100 nM. Combination treatment of $10{\mu}M$ sulforaphane and 1 nM PF-3758309 did not affect the cell viability. The LPS-stimulated NO generation was significantly reduced by the mixed composition of sulforaphane and PF-3758309. Melanogenesis by ${\alpha}$-melanocyte stimulating hormone (${\alpha}$-MSH) was also inhibited by the mixed composition. In order to confirm the possibility as the cosmetic material, we carried out clinical studies for the mixed composition samples. Skin safety evaluation using patch test was judged to be unstimulated, skin whitening effect was increased, and melanin deposition was suppressed by treatment of mixed composition samples. These results provide us with the opportunity for applying it into the development of new functional cosmetics.
Keywords
sulforaphane; functional cosmetics; antioxidant; whitening; skin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Hwa, E. A. Bauer, and D. E. Cohen, Skin biology, Dermatol. ther., 24(5), 464 (2011).   DOI
2 A. A. Ortiz, B. Yan, and J. A. D. Orazio, Ultraviolet radiation aging and the skin: prevention of damage by topical cAMP manipulation, Molecules, 19(5), 6202 (2014).   DOI
3 H. G. Lee, Y. S. Won, E. B. L. Koh, Y. A. Kim, J. E. Kim, Y. J. Kim, C. W. Han, M. W. Choi, J. I. Kim, and Y. J. Jeon, Protective effects of ecklonia cava film on UV B-induced photodamages, Kor. J. Fish. Aquat. Sci., 50(6), 714 (2017).   DOI
4 H. D. Je, The inhibitory effect of broccoli in cruciferous vegetables derived-sulforaphane on vascular tension, Yakha. Hoeji., 58(4), 223 (2014).
5 J. W. Fahey and P. Talalay, Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes, Food. Chem. Toxicol., 37(9), 973 (1999).   DOI
6 S. M. Figueiredo, N. S. Binda, J. A. Nogueira-Machado, S. A. Vieira-Filho, and R. B. Caligiorne, The antioxidant properties of organosulfur compounds (sulforaphane), Recent. Pat. Endocr Metab. Immune. Drug. Discov., 9(1), 24 (2015).   DOI
7 S. Boddupalli, J. R. Mein, S. Lakkanna, and D. R. James, Induction of phase2 antioxidant enzymes by broccoli sulforaphane :perspectives in maintaining the antioxidant activity of vitamins A, C, and E, Front. Genet., 3(7), 1 (2012).
8 A. Wiczk, D. Hofman, G. Konopa, and A. H. Antosiewicz, Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells, Biochim. Biophys. Acta., 1823(8), 1295 (2012).   DOI
9 A. Qazi, J. Pal, M. Maitah, M. Fulciniti, D. Pelluru, P. Nanjappa, S. Lee, R. B. Batchu, M. Prasad, C. S. Bryant, S. Rajput, S. Gryaznov, D. G. Beer, D. W. Weaver, N. C. Munshi, R. K. Goyal, and M. A. Shammas, Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy, Transl. Oncol., 3(6), 389 (2010).   DOI
10 I. Shirasugi, M. Kamada, T. Matsui, Y. Sakakibara, M. C. Liu, and M. Suiko, Sulforaphane inhibited melanin synthesis by regulating tyrosinase gene expression in B16 mouse melanoma cells, Biosci. Biotechnol. Biochem., 74(3), 579 (2010).   DOI
11 Y. J. Kang, A. R. Han, H. Y. Min, J. Y. Hong, E. K. Seo, and S. K. Lee, Inhibitory effects of morachalcone A on lipopolysaccharide- induced nitric oxide production in RAW 264.7 cells, Cancer. Pre. Res., 14(2), 118 (2009).
12 B. W. Murray, C. Guo, J. Piraino, J. K. Westwick, C. Zhang, J. Lamerdin, E. Dagostino, D. Knighton, C. M. Loi, M. Zager, E. Kraynov, I. Popoff, J. G. Christensen, R. Martinez, S. E. Kephart, J. Marakovits, S. Karlicek, S. Bergqvist, and T. Smeal, Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth, Proc. Nati. Acad. Sci., 107(20), 9446 (2010).   DOI
13 C. Y. Yun, S. T. You, J. H. Kim, J. H. Chung, S. B. Han, E. Y. Shin, and E. G. Kim, p21 activated kinase 4 critically regulates melanogenesis via activation of the CREB/MITF, and b-Catenin/MITF pathways, J. Invest. Dermatol., 135(5), 1385 (2015).   DOI
14 M. H. Park, H. S. Lee, C. S. Lee, S. T. You, D. J. Kim, B. H. Park, M. J. Kang, W. D. Heo, E. Y. Shin, M. A. Schwartz, and E. G. Kim, p21-activated kinase 4 promotes prostate cancer progression through CREB, Oncogene., 32(19), 2475 (2013).   DOI
15 I. S. An, J. H. Kim, H. S. Yoo, R. Zhang, S. M. Kang, T. B. Choe, T. J. Kwon, S. K. An, and G. Y. Kim, The Inhibition effect of L-cysteine on melanogenesis in B16F10 mouse melanoma cells, Kor. J. Aesthet. Cosmetol., 5(2), 239 (2007).
16 M. J. Kim, N. Y. Bae, K. B. W. R. Kim, J. H. Park, S. H. Park, Y. J. Cho, and D. H. Ahn, Anti-inflammatory effect of zostera marina ethanoic extract on LPS induced RAW 264.7 cells and mouse model, Kor. Soci. Biotechnol. Bioengin., 30(4), 182 (2015).
17 Y. Liu, S. Fang, X. Li, J. Feng, J. Du, L. Guo, Y. Su, J. Zhou, G. Ding, Y. Bai, S. Wang, H. Wang, and Y. Liu, Aspirin inhibits LPS-induced macrophage activation via the $NF-{\kappa}B$ pathway, Sci. Rep., 7(1), 1 (2017).   DOI
18 D. Kesanakurti, D. Maddirela, Y. K. Banasavadi-Siddegowda, T. H. Lai, Z. Qamri, N. K. Jacob, D. Sampath, S. Mohanam, B. Kaur, and V. K. Puduvalli. A novel interaction of PAK4 with $PPAR{\gamma}$ to regulate Nox1 and radiation-induced epithelial-to-mesenchymal transition in glioma, Oncogene, 14(36), 5309 (2017).