Browse > Article
http://dx.doi.org/10.15230/SCSK.2018.44.3.295

Evaluation of Alcea rosea L. Callus Extract as a Natural Cosmetic Ingredient  

Lee, Gibok (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.)
Yeom, Areum (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.)
Won, Kim Dong (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.)
Park, Chang-Min (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.)
Joung, Min-Seok (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.)
Lee, Gi Yong (R&D Center, Hankook Cosmetics Manufacturing Co., Ltd.)
Jeong, Cheol-seung (Chungbuk National University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.44, no.3, 2018 , pp. 295-302 More about this Journal
Abstract
In this study, we investigated the biological effects of Alcea rosea L. callus extract for the development of natural cosmetics ingredients. The antioxidant activities of A. rosea L. callus extract was measured through DPPH, ABTS and FRAP assay. As a result, A. rosea L. callus extract were found to have a strong antioxidant ability in a dose dependent manner. In addition, A. rosea L. callus effectively reduced the intracellular oxidative stress induced by AAPH at a concentration of 10 mg/mL. In a tyrosinase activity assay, we found that A. rosea L. callus extract reduced tyrosinase activity by 51% at 10 mg/mL. Based on these results, A. rosea L. callus extract is considered as a promising natural ingredients for cosmetics with antioxidant and whitening functions.
Keywords
callus; Alcea rosea L.; antioxidant; cosmetic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. A. Abdel-Salam, N. M. Ghazy, S. M. Sallam, M. M. Radwan, A. S. Wanas, M. A. ElSohly, M. A. El-Demellawy, N. M. Abdel-Rahman, S. Piacente, and M. L. Shenouda, Flavonoids of Alcea rosea L. and their immune stimulant, antioxidant and cytotoxic activities on hepatocellular carcinoma HepG-2 cell line, Nat. Prod. Res., 32, 702 (2018).   DOI
2 I. Ahmed, B. C. Roy, D. Subramaniam, S. A. Ganie, D. Kwatra, D. Dixon, S. Anant, M. A. Zargar, and S. Umar, An ornamental plant targets epigenetic signaling to block cancer stem cell-driven colon carcinogenesis, Carcinogenesis, 37, 385 (2016).   DOI
3 M. Ahmadi, A. K. Rad, Z. Rajaei, M. A. Hadjzadeh, N. Mohammadian, and N. S. Tabasi, Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats, Indian J. Pharmacol., 44, 304 (2012).   DOI
4 W. B. E. Ghaoui, E. B. Ghanem, L. A. Chedid, and A. M. Abdelnoor, The effects of Alcea rosea L., Malva sylvestris L. and Salvia libanotica L. water extracts on the production of anti-egg albumin antibodies, interleukin-4, gamma interferon and interleukin-12 in BALB/c mice, Phytother. Res., 22, 1599 (2008).   DOI
5 W. Brand-Williams, M. E. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT, 28, 25 (1995).   DOI
6 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med., 26, 1231 (1999).   DOI
7 H. Liao, W. Dong, X. Shi, H. Liu, and K. Yuan, Analysis and comparison of the active components and antioxidant activities of extracts from Abelmoschus esculentus L, Pharmacogn. Mag., 8, 156 (2012).   DOI
8 S. Marklund and G. Marklund, Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase, Eur. J. Biochem., 47, 469 (1974).   DOI
9 M. Rinnerthaler, J. Bischof, M. K. Streubel, A. Trost, and K. Richter, Oxidative stress in aging human skin, Biomolecules, 5, 545 (2015).   DOI
10 T. I. Oh, J. M. Yun, E. J. Park, Y. S. Kim, Y. M. Lee, and J. H. Lim, Plumbagin suppresses ${\alpha}$-MSH-induced melanogenesis in B16F10 mouse melanoma cells by inhibiting tyrosinase activity, Int. J. Mol. Sci., 18, 320 (2017).   DOI
11 U. Panich, G. Sittithumcharee, N. Rathviboon, and S. Jirawatnotai, Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging, Stem Cells Int., 2016, 7370642 (2016).
12 J. Andrej, F. Juraj, P. Ivana, and M. Tibor, Approaches to flavonoid production in plant tissue cultures, Biologia Bratislava, 59, 697 (2004).
13 A. Chaiprasongsuk, T. Onkoksoong, T. Pluemsamran, S. Limsaengurai, and U. Panich, Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses, Redox Biol., 8, 79 (2016).   DOI
14 Y. Wang, M. M. Hao, Y. Sun, L. F. Wang, H. Wang, Y. J. Zhang, H. Y. Li, P. W. Zhuang, and Z. Yang, Synergistic promotion on tyrosinase inhibition by antioxidants, Molecules, 23 (2018).
15 P. K. Mukherjee, N. Maity, N. K. Nema, and B. K. Sarkar, Bioactive compounds from natural resources against skin aging, Phytomedicine, 19, 64-73 (2011).   DOI
16 K. B. Patkar, Herbal cosmetics in ancient India, Indian J. Plast. Surg, 41, 134 (2008).
17 L. Baumann, H. Woolery-Lloyd, and A. Friedman, "Natural" ingredients in cosmetic dermatology, J. Drugs Dermatol., 8, 5 (2009).
18 D. A. Dias, S. Urban, and U. Roessner, A historical overview of natural products in drug discovery, Metabolites, 2, 303 (2012).   DOI
19 A. Martins, H. Vieira, H. Gaspar, and S. Santos, Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success, Mar. Drugs, 12, 1066 (2014).   DOI
20 T. S. Chang, Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity, Materials, 5, 1661 (2012).   DOI
21 I. Binic, V. Lazarevic, M. Ljubenovic, J. Mojsa, and D. Sokolovic, Skin ageing: natural weapons and strategies, Evid. Based Complementary Altern. Med., 2013, 827248 (2013).
22 S. Parvez, M. Kang, H. S. Chung, and H. Bae, Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries, Phytother. Res., 21, 805 (2007).   DOI
23 I. M. Sussex, The scientific roots of modern plant biotechnology, Plant Cell, 20, 1189 (2008).   DOI
24 W. P. Bowe and S. Pugliese, Cosmetic benefits of natural ingredients, J. Drugs Dermatol., 13, 1021 (2014).
25 D. Pimentel, Global warming, population growth, and natural resources for food production, Soc. Nat. Resour., 4, 347 (1991).   DOI
26 A. A. Rafindadi, Z. Yusof, K. Zaman, P. Kyophilavong, and G. Akhmat, The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries, Environ. Sci. Pollut. Res. Int., 21, 11395 (2014).   DOI
27 W. E. Winner and C. J. Atkinson, Absorption of air pollution by plants, and consequences for growth, Trends Ecol. Evol., 1, 15 (1986).   DOI
28 B. Fonseca-Santos, M. A. Corra, and M. Chorilli, Sustainability, natural and organic cosmetics: consumer, products, efficacy, toxicological and regulatory considerations, Braz. J. Pharm. Sci., 51, 17 (2015).   DOI
29 M. Ikeuchi, K. Sugimoto, and A. Iwase, Plant callus: mechanisms of induction and repression, Plant Cell, 25, 3159 (2013).   DOI
30 R. B. Santos, R. Abranches, R. Fischer, M. Sack, and T. Holland, Putting the spotlight back on plant suspension cultures, Front. Plant. Sci., 7, 297 (2016).
31 M. Ochoa-Villarreal, S. Howat, S. Hong, M. O. Jang, Y. W. Jin, E. K. Lee, and G. J. Loake, Plant cell culture strategies for the production of natural products, BMB Rep., 49, 149 (2016).   DOI
32 M. S. Hussain, S. Fareed, S. Ansari, M. A. Rahman, I. Z. Ahmad, and M. Saeed, Current approaches to- ward production of secondary plant metabolites, J. Pharm. Bioallied. Sci., 4, 10 (2012).