Browse > Article
http://dx.doi.org/10.15230/SCSK.2018.44.3.219

Studies on Cosmeceutical Activity of Extracts of Moringa oleifera Extract  

Kim, So Ra (Department of Cosmetic and Biotechnology, Hoseo University)
Yoo, Dan Hee (Department of Cosmetic and Biotechnology, Hoseo University)
Yeom, Hyeon Ji (Department of Cosmetic and Biotechnology, Hoseo University)
Oh, Min Jeong (Department of Cosmetic and Biotechnology, Hoseo University)
Lee, Jin Young (Department of Cosmetic and Biotechnology, Hoseo University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.44, no.3, 2018 , pp. 219-229 More about this Journal
Abstract
The purpose of this study was to investigate the role of the Moringa oleifera (M. oleifera) extract as a cosmetic additive. The tyrosinase and elastase inhibitory effects showed 47% and 39% at $1,000{\mu}g/mL$ concentration, respectively. Also, the collagenase inhibition effect was 31% at $500{\mu}g/mL$ concentration. A cell viability test, measured on macrophage cell (RAW 264.7) and melanoma cell (B16F10) by ethanol extract of M. oleifera, showed 94.2% and 94.8% at $100{\mu}g/mL$ concentration, respectively. In order to confirm anti-inflammatory activity, we examined the inhibitory effects on the production of lipopolysaccharides (LPS)-induced NO in RAW 264.7 cells by Griess assay. As a result, the M. oleifera extract showed a concentration-dependent inhibition of NO production. The protein expression inhibitory effects of M. oleifera extract were measured by western blot at 25, 50, $100{\mu}g/mL$ concentration and the ${\beta}-actin$. Results showed that the expression inhibition rates of the iNOS, COX-2, MITF, TRP-1, TRP-2, tyrosinase protein were decreased by 85.8%, 57.5%, 80.7%, 30%, 29.9%, 23.6% at $100{\mu}g/mL$ concentration, respectively. It was concluded that M. oleifera extracts had the anti-inflammatory and whitening effects and thus could be applied for cosmetics as a natural ingredient.
Keywords
Moringa oleifera; anti-inflammatory; whitening;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. O. Lim, J. S. Park, S. O. Hwang, K. M. Min, and Y. J. Chae, Cosmetics industry analysis report, 57, Korea Health Industry Development Institute (2011).
2 J. M. Lee and J. S. An, The influence of purchasing behavior on brand attitude, shopping satisfaction, and recommendation of herbal cosmetics consumer, J. Fashion Business, 15(1), 129 (2011).
3 Y. Heo and H. A. Kim, Correlation between skin prick test and enzyme-linked immunosorbent assay using serum for identification of subjects positive to major respiratory allergens, Korea J. Environmental Health, 34(5), 369 (2008).
4 D. H. Jeong, K. B. W. R. Kim, B. K. Kang, S. A. Jung, H. J. Kim, H. Y. Jeong, S. W. Park, and D. H. Ahn, Anti-inflammatory activity of the Undaria pin- natifida water extract, J. Appli. Biologi. Chemi., 55(4), 221 (2012).   DOI
5 J. K. Kundu and Y. J. Surh, Inflammation: gearing the journey to cancer, Mutat. Res-Rev. Mutat., 659(1), 15 (2008).   DOI
6 M. Miyataka, K. A. Rich, M. Ingram, T. Yamamoto, and R. J. Bing, Nitric oxide, anti-inflammatory drugs on renal prostaglandins and cyclooxygenase-2, Hypertension, 39(3), 785 (2002).   DOI
7 D. J. Stuehr, H. J. Cho, N. S. Kwon, M. F. Weise, and C. F. Nathan, Purification and characteriazation of the cytokine-induced macrophage nitric oxide syn- thase: an FAD and FMN containing flavoprotein, Proc. Natl. Acad. Sci. U.S.A., 88(17), 7773 (1991).   DOI
8 M. G. Ryo, KDA textbook editiong board, Dermatology, 5, 348, Seoul (2008).
9 K. Maeda and M. Fukuda, In vitro effectiveness of several whitening cosmetic components in human melanocytes, J. Soc. Cos. Chem., 42, 361 (1991).
10 N. Smit, J. Vicanova, and S. Pavel, The hunt for natural skin whitening agents, Int. J. Mol. Sci., 10(12), 5326 (2009).   DOI
11 M. Seiji, K. Shimao, M. S. Birbeck, and T. B. Fitzpatrick, Subcellular localization of melanin biosynthesis, Ann. N. Y. Acad. Sci., 100(1), 497 (1963).   DOI
12 T. Kushimoto, V. Basrur, J. Valencia, J. Matsunaga, W. D. Vieira, V. J. Ferrans, J. Muller, E. Appella, and V. J. Hearing, A model for melanosome biogenesis based on the purification and analysis of early melanosomes, Proc. Natl. Acad. Sci. U.S.A., 98(19), 10698 (2001).   DOI
13 E. Y. Kwak, Effect of TPA on MIFT (microphthalmia-associated transcription factor) protein chip and melanogenesis in B16 melanoma cell, Inha Univ., (2006).
14 Y. J. Choi and K. I. Jung, Anti-diabetic, alcohol-metabolizing, and hepatoprotective activities of Moringa (Moringa oleifera Lam.) leaf extracts, J. Korean Soc. Food Sci. Nutr., 45(6), 819 (2016).   DOI
15 R. Paliwal, V. A. Sharma, and Pracheta, A review on horse radish tree (Moringa oleifera): a multipurpose tree with high economic and commercial importance, J. Biotech., 3(4), 317 (2011).
16 F. Anwar, S. Latif, M. Ashraf, and A. H. Gilarni, Moringa oleifera: a food plant with multiple medicinal uses, Phyto. Res., 21(1), 17 (2007).   DOI
17 A. A. Hamza, Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats, Food Chem. Toxicol., 48(1), 345 (2009).   DOI
18 H. H. Ki, K. H. Moon, J. H. Lee, J. H. Lee, D. G. Kim, K. O. Jeong, S. Y. Im, Y. M. Lee, and D. K. Kim, Synergistic inhibition of aronia melanocarpa and Moringa oleifera seed extract on experimental atopic dermatitis, J. Korean Soc. Food Sci. Nutr., 46(3), 298 (2017).   DOI
19 H. J. Lee and Y. C. Chang, Suppression of TNF-${\alpha}$-induced inflammation by extract from different parts of Moringa in HaCaT cells, J. Life Sci., 22(9), 1254 (2012).   DOI
20 A. Yagi, T. Kanbara, and N. Morinobu, Inhibition of mushroom-tyrosinase by aloe extract, Planta. Medica., 53(6), 515 (1986).   DOI
21 D. L. DeWitt, T. E. Rollins, J. S. Day, J. A. Gauger, and W. L. Smith, Orientation of the active site and antigenic determinants of prostaglandin endoperoxide of synthase in the endoplasmic reticulum, J. Bio. Chemi., 256(20), 10375 (1981).
22 R. J. Cannell, S. J. Kellan, A. M. Owsianks, and J. M. Walker, Results of a large scale screen of microalgae for the production of protease inhibitors, Planta. Medica., 54(1), 10 (1988).   DOI
23 E. Wunsch and H. G. Heindrich, Zur quantitativen bestimmung der kollagenase, Hoppe-Seyler's Z. Physiol. Chem., 333(1), 149 (1963).   DOI
24 J. Carmichael, W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing, Cancer Res., 47(4), 936 (1987).
25 L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids, Analy. Bio., 126(1), 131 (1982).   DOI
26 S. Im, O. Moro, F. Peng, E. E. Medrano, J. Cornelius, G. Babcock, J. J. Nordlund, and Z. A. Abdel-Malek, Activation of the cyclic AMP pathway by ${\alpha}$-melanotropin mediates the rest of human melanocytes to ultraviolet B radiation, Cancer Res., 58(1), 47 (1998).
27 M. E. Choi, B. K. Jeon, D. S. Kim, Y. J. Mun, and W. H. Woo, A study on application for beauty food of mixture of Korean red ginseng and Fagopyrum esculentum: anti-oxidative effect and collagenase inhibitory activity, Herb. Formula Sci., 17(1), 153 (2009).
28 P. U. Giacomoni and G. Rein, Factors of skin ageing share common mechanisms, Biogerontology, 2(4), 219 (2001).   DOI
29 S. P. Jeroma, L. Gabrielle, and F. Raul, Identification of collagen fibrils in scleroderma skin, J. Investig. Dermatol., 90(1), 48 (1998).   DOI
30 M. El-Domyati, S. Attia, F. Saleh, D. Brown, D. E. Birk, F. Gasparro, H. Ahmad, and J. Uitto, Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin, Exp. Dermatol., 11(5), 398 (2002).   DOI
31 M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B, Biol., 63(1), 41 (2001).   DOI
32 R. M. Palmer, A. G. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327(6122), 524 (1987).   DOI
33 H. Ukeda, S. Maeda, T. Ishii, and M. Sawamura, Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'--1--(phenylamino)-carbonyl--3, 4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase, Anal. Biochem., 251(2), 206 (1997).   DOI
34 B. G. Knowles and S. Moncada, Nitric oxide synthases in mammals, Bio. J., 298(2), 249 (1994).
35 C. Nathan, Inducible nitric oxide synthase: what difference does it make?, J. Clinical investigation, 100(10), 2417 (1997).   DOI
36 F. S. Laroux, Mechanisms of inflammation: the good, the bad and the ugly, Front. Biosci., 9, 3156 (2004).   DOI
37 R. Korhonen, A. Lahti, H. Kankaanranta, and E. Moilanen, Nitric oxide production and signaling in inflammation, Curr. Drug Targets Inflamm. Allergy, 4(4), 471 (2005).   DOI
38 J. Rodriguez-Vita and T. Lawrence, The resolution of inflammation and cancer, Cytokine Growth Factor Rev., 21(1), 61 (2010).   DOI
39 D. O. Adams and T. A. Hamilton, The cell biology of macrophage activation, Annu. Rev. Immunol., 2, 283 (1984).   DOI
40 M. E. Turini and R. N. DuBois, Cyclooxygenase-2: a therapeutic target, Annu. Rev. Med., 53, 35 (2002).   DOI
41 C. S. Williams, M. Mann, and R. N. DuBois, The role of cyclooxygenases in inflammation, cancer, and development, Oncogene, 18(55), 7908 (1999).   DOI
42 G. E. Costin and V. J. Hearing, Human skin pigmentation: melanocytes modulate skin color in response to stress, FASEB J., 21(4), 976 (2007).   DOI