Browse > Article
http://dx.doi.org/10.15230/SCSK.2017.43.4.337

Antioxidant and Anti-inflammatory Effects of Dioscorea japonica and Chenopodium album  

Kim, Shin Ae (Department of Chemistry, College of Natural science, Kunsan Natural University)
Choi, Soo Cheol (Department of Chemistry, College of Natural science, Kunsan Natural University)
Youn, Young Han (Department of Beauty Care, Sohae College)
Ko, Chang In (Department of Information Telecommunication Engineering, college of Engineering, Kunsan Natural University)
Ha, Young Soon (C & S Co., Ltd.)
Lee, In-Ah (Department of Chemistry, College of Natural science, Kunsan Natural University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.43, no.4, 2017 , pp. 337-347 More about this Journal
Abstract
In this study, free radical scavenging activity and enzyme-linked immunosorbent assay (ELISA) experiments were carried out using Dioscorea japonica (D. japonica) and Chenopodium album (C. album) extracts to evaluate their anti-oxidative and anti-inflammatory effects. In the free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity, $EC_{50}$ of D. japonica and C. album were measured as 2.386 and 0.524 mg/mL, respectively. The free radical scavenging activity of the mixed sample of D. japonica and C. album was the highest when the D. japonica and C. album ratio was 2 : 1. The IL-6 and $TNF-{\alpha}$ ELISA assay showed that IL-6 in mouse spleen cells treated 1 mg/mL of samples, D. japonica and C. album decreased the production of IL-6 concentration by 27.17%, 72.30%. In the case of $TNF-{\alpha}$, D. japonica and C. album decreased 61.97% and 77.85% of $TNF-{\alpha}$ production, respectively. Through these results, we confirmed that D. japonica and C. album have antioxidant and anti - inflammatory effects and could be applied to natural medicine cosmetic having anti - inflammatory effects.
Keywords
Dioscorea japonica; Chenopodium album; DPPH radical scavenging activity; antioxidant; anti-inflammatory;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Z. Huang, Z. Liang, G. Li, and H. Hong, Response surface methodology to extraction of Dioscorea polysaccharides and the effects on rat's bone quality, Carbohydrate Polymers, 83(1), 32-37 (2011).   DOI
2 M. K. Kim and K. K. Lee, Screening of physiological activities of Discurea japonica extracts, Korean Beauty Society, 19, 509 (2013).
3 K. D. Yoon and J. Kim, Preparative separation of dioscin derivatives from Dioscorea villosa by centrifugal partition chromatography coupled with evaporative light scattering detection. J. Sep. Sci., 31, 2486 (2008).   DOI
4 M. H. Kim and S. J. Lim, The effect of Dioscorea japonica Thunb. subfractions on blood glucose levels and energy metabolite composition in streptozotocin induced diabetic rats, Int. J. Food Sci. Nutr., 33(2), 115-123 (2000).
5 M. H Kim, Effects of $H_2O$ - fraction of Dioscorea japonica Thunb. and selenium on lipid peroxidation in streptozotocin - induced diabetic rats, Korean J. Food and Cookery Sci., 17(4), 344-352 (2001).
6 Z. Ali, T. J. Smillie, and I. A. Khan, Cholestane steroid glycosides from the rhizomes of Dioscorea villosa (wild yam). Carbohydr. Res., 370, 86 (2013).   DOI
7 S. H. Dong, D. Nikoli, C. Simmler, F. Qiu, R. B. Breemen, D. D. Soejarto, G. F. Pauli, and S. N. Chen, Diarylheptanoids from Dioscorea villosa (Wild Yam). J. Nat. Prod,. 75, 2168 (2012).   DOI
8 J. Cho, H. Choi, J. Lee, M. S. Kim, H. Y. Sohn, and D. G. Lee, The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica, Biochim. Biophys. Acta, 1828, 1153 (2013).   DOI
9 H. S. Chung, A study of cytotoxicity from some korean edible plants, Korean J. Food and Cookery Sci., 15(2), 108-113 (1999).
10 H. L. Chen, C. H. Wang, C. T. Chang, and T. C. Wang, Effects of Taiwanese yam (Dioscorea japonica Thunb. var. pseudo japonica Yamamoto) on upper gut function and lipid metabolism in Balb/c mice, Nutrition, 19, 646-651 (2003).   DOI
11 S. F. Bazan, P. Uotila, and T. Borsch: A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae), In: Willdenowia, 42(1), 5-24 (2012).   DOI
12 Y. S. Choo and S. D. Song, Ecophysiological characteristics of chenopodiaceous plants - an approach through inorganic and organic solutes. Korean J. of ecology, 23(5), 397-406 (2000).
13 S. U. Chon, B. G. Heo, Y. S. Park, D. K. Kim, and S. Gorinstein, Total phenolics level, antioxidant activities and cytotoxicity of young sprouts of some traditional Korean salad plants. Plant Foods Hum. Nutr., 64(1), 25-31 (2009).   DOI
14 A. V. Galvez, M. Miranda, J. Vergara, E. Uribe, L. Puente, and E. A. Martinez. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review, J. Sci. Food. Agric., 90(15), 2541-2547 (2010).   DOI
15 K. D. Sharma, G. Bindal, R. Rathour, and J. C. Rana, Carotene and mineral content of different Chenopodium species and the effect of cooking on micronutrient retention, Int. J. Food Sci. Nutr., 63(3), 290-295 (2012).   DOI
16 A. Adedapo, F. Jimoh, and A. Afolayan, Comparison of the nutritive value and biological activities of the acetone, methanol and water extracts of the leaves of Bidens pilosa and Chenopodium album, Acta. Pol. Pharm., 68(1), 83-92 (2011).
17 A. Poonia and A. Upadhayay, Chenopodium album Linn: review of nutritive value and biological properties. J. Food Sci. Technol., 52(7), 3977-3985 (2015).   DOI
18 P. Kim and C. S. Jeong, Anti-gastritis and anti-oxidant effects of Chenopodium album Linne fractions and betaine, Biomole. & Ther., 18(4), 433-441 (2010).   DOI
19 Y. Dai, W.C. Ye, Z. T. Wang, H. Matsuda, M. Kubo, and P.P. But, Antipruritic and antinociceptic effects of Chenopodium album Linn, Mice. J. Ethnopharm., 81, 245-250 (2002).   DOI
20 B. K. Khoobchandani, B. S. Ojeswi, and M. S. Man, Chenopodium album prevents progression of cell growth and enhances cell toxicity in human breast cancer cell lines, Oxid. Med. Cell Longev., 2(3), 160-165 (2009).   DOI
21 P. Kim and C. S. Jeong, Effects of Chenopodium album Linne on gastritis and gastric cancer cell growth, Biomole. & Ther., 19(4), 487-492 (2011).   DOI
22 B. L. Graf, A. Poulev, P. Kuhn, M. H. Grace, M. A. Lila, and I. Raskin, Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties, Food Chem., 15(163), 178-185 (2014).
23 B. W. Kim, H. J. Park, H. J. Kwon, Y. N. Oh, and S. J. Jin, Anti-oxidative and anti-cancer activities by cell cycle regulation of Salsola collina extract. Microbiol. Biotechnol. Lett., 42(1), 73-81 (2014).   DOI
24 H. B. Li, C. C. Wong, K. W. Cheng, and Feng Chen, Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants, In LWT - Food Science and Technology, 41(3), 385-390 (2008).   DOI
25 B. O. Lim, D. H. Kim, S. R. Park, T. Debnath, M. A. Hasnat, and M. Pervin, Evaluation of the antioxidant activity and anti-inflammatory effect of Hericium erinaceus water extracts. Korean J. Med. Crop Sci., 21(2), 112-117 (2013).   DOI
26 S. T. Lee, Y. R. Jeong, M .H. Ha, S. H. Kim, M.W. Byun, and S. K. Jo. Induction of nitric oxide and TNF-${\alpha}$ by herbal plant extracts in mouse macrophages. J. Korean Soc. Food Sci. Nutr., 29, 342-348 (2000).
27 D. Huang, B. Ou, and R. L. Prior, Reviews: the chemistry behind antioxidant capacity assays, J. Agric. Food Chem., 53, 1841-1856 (2005).   DOI
28 C. Pan, C. Kumar, S. Bohl, U. Klingmueller, and M. Mann, Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol. Cell Proteomics, 8(3), 443-450 (2009).   DOI
29 C.A. Feghali and T. M. Wright, Cytokines in acute and chronic inflammation. Front Biosci., 1(2), 12-26 (1997).
30 S. V. Rana, S. Sharma, S. K. Sinha, K. K. Parsad, A. Malik, and K. Singh, Pro-inflammatory and anti- inflammatory cytokine response in diarrhoea-predominant Irritable bowel syndrome patients, Tropical Gastroenterology, 33(4), 251-256 (2012).   DOI
31 M. M. Chaturvedi, R. L. Pushin, and B. B. Aggarwal. Tumor necrosis factor and lymphotoxin: qualitative and quantitative differences in the mediation of early and late cellular response, J. Biological Chemistry, 269(20), 14575-14583 (1994).
32 J. M. Zhang and J. An, Cytokines, Inflammation and pain. Int. Anesthesiol. Clin., 45(2), 27-37 (2007).   DOI
33 Y. S. Kim, S. J. Lee, J. W. Hwang, E. H. Kim, P. J. Park, and J. H. Jeong, Anti-inflammatory effects of extracts from Ligustrum ovalifolium H. leaves on RAW 264.7 macrophages, J. Korean Soc. Food Sci. Nutr., 41, 1205-1210 (2012).   DOI
34 M. Namiki, Antioxidants/antimutagensin food, Crit. Rev. Food Sci., 29(4), 273-300 (1990).   DOI
35 J. C. Fantone and P. A. Ward. Role of oxygen-derived free radicals and metabolites in leukocyte dependent inflammatory reaction, Am. J. Pathol., 107(3), 395-418 (1982).
36 M. L. McDaniel, G. Kwon, J. R. Hill, C. A. Marshall, and J. A. Corbett. Cytokines and nitric oxide in islet inflammation and diabetes, Proc. Soc. Exp. Biol. Med., 211, 24-32 (1996).   DOI
37 Y. Xue, T. Miyakawa, A. Nakamura, K. Hatano, Y. Sawano, and M. Tanokura, Yam tuber storage protein reduces plant oxidants using the coupled reactions as carbonic anhydrase and dehydroascorbate reductase, Molecular Plant, 8(7), 1115-1118 (2015).   DOI
38 H. Herlina, Deproteinase effect of hydrocolloid flour made of Gembili Tuber (Dioscorea esculenta L.) on chemical and technical functional properties, Int. J. Adv. Sci., Engineering and Information Technology, 5(4), 298-302 (2015).   DOI