Browse > Article
http://dx.doi.org/10.15230/SCSK.2017.43.3.195

Synthesis of Methylated and Acetylated Derivatives of Meso-dihydroguaretic Acid and Study of Their Inhibitory Activities on LPS Derived Nitric Oxide (NO) Production  

Choi, Kyungoh (Department of Chemical and Material Engineering, Beauty Science Research Center, The University of Suwon)
Rho, Ho Sik (Department of Chemical and Material Engineering, Beauty Science Research Center, The University of Suwon)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.43, no.3, 2017 , pp. 195-200 More about this Journal
Abstract
This study was conducted to examine the inhibitory effects of meso-dihydroguaretic acid (MDGA, 1) and its synthetic derivatives (compound 2 and 3) against NO production. MDGA is a lignan component isolated from the bark of Machilus thunbergii Sieb. et Zucc. We synthesized dimethylated MDGA (2), diacetylated MDGA (3) and compared NO inhibition of two derivatives with that of MDGA (1). MDGA (1) and compound 3 showed suppressive effects against the generation of NO in LPS-activated macrophages. RT-PCR analysis suggested that MDGA (1) and compound 3 inhibited NO production through the suppression of iNOS mRNA expression. From these results, diacetylated MDGA (3) can be used as a pro-drug for MDGA.
Keywords
meso-dihydroguaretic acid; methylated derivatives; acetylated derivative; nitric oxide; LPS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. S. Chung and M, G, Shin, Dictionary of Korean Folk Medicine, Yong Lim Sa, p. 458 (1990).
2 U. Y. Yu, S. Y. Kang, H. Y. Park, S. H. Sung, E. J. Lee, S. Y. Kim, and Y. C. Kim, Antioxidant lignans from Machilus thunbergii protect CCl4-injured primary cultures of rat hepatocytes, J. Pharm. Pharmacol., 52, 1163 (2000).   DOI
3 H. Shimomura, Y. Sashida, and M. Oohara, Lignans from Machilus thunbergii, Phytochemistry, 26, 1513 (1987).   DOI
4 H. Karikome, Y. Mimaki, and Y. Sashida, A butanolide and phenolics from Machilus thunbergii, Phytochemistry, 30, 315 (1991).   DOI
5 C. J. Ma, S. H. Sung, and Y. C. Kim, Neuroprotective lignans from the bark of Machilus thunbergii, Planta Med., 70, 79 (2004).   DOI
6 M. K. Lee, H. Yang, C. J. Ma, and Y. C. Kim, Stimulatory activity of lignans from Machilus thunbergii on osteoblast differenctiation, Biol. Pharm. Bull., 30, 814 (2007).   DOI
7 H. I. Moo and J. H. Chung, Meso-dihydroguaiaretic acid from Machilus thunbergii SIEB et Zucc., and its effects on the expression of matrix metalloproteinase- 2, 9 cause by ultraviolet irradiated cultured human keratinocyte cells (HaCaT), Biol. Pharm. Bull., 28, 2176 (2005).   DOI
8 H. Y. Park, H. S. Rho, D. H. Kim, H. G. D. H. Kim, Q. Q. He, and J. H. Yeon, Modified rancimat method for evaluation of antioxidative effect against skin lipid, Bull. Korean Chem. Soc., 31, 1751 (2010).   DOI
9 G. Li, H. K. Ju, H. W. Chang, Y. Jahng, S. H. Lee, and J. K. Son, Melanin biosynthesis inhibitors from the bark of Machilus thunbergii, Biol. Pharm. Bull., 26, 1039 (2003).   DOI
10 J. H. Ryu, H. Ahn, J. Y. Kim, and Y. K. Kim, Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages, Phytother. Res., 17, 485 (2003).   DOI
11 J. R. Kanwar, R. K. Kanwar, H. Burrow, and S. Baratchi, Recent advances on the roles of NO in cancer and chronic inflammatory disorders, Curr. Med. Chem., 19, 2373 (2009).
12 J. Park, J. H. Park, H. J. Suh, I. C. Lee, J. Koh, and Y. C. Boo, Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis, Arch. Dermatol., 306, 475 (2014).   DOI
13 D. S. Bredt, Endogenous nitric oxide synthesis: biological functions and phathophysiology, Free. Radic. Res., 31, 577 (1999).   DOI
14 T. J. Guzik, R. Korbut, and T. Adamek-Guzik, Nitric oxide and superoxide in inflammation and immune regulation, J. Physiol. Pharmacol., 54, 469 (2003).
15 H. S. Rho, H. S. Baek, J. W. Yoo, S. J. Kim, M. K. Kim, D. H. Kim, and I. S. Chang, Biological activities of 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide : A mimic compound of trans-resveratrol, Bull. Korean Chem. Soc., 28, 837 (2007).   DOI
16 H. Yoo, S. H. Kim, J. Lee, H. J. Kim, S. H. Seo, B. Y. Chung, C. Jin, and Y. S. Lee, Synthesis and antioxidants activity of 3-methoxyflavones,. Bull. Korean Chem. Soc., 26, 2057 (2005).   DOI
17 Z. H. Shi, N. G. Li, Y. P. Tang, J. P. Yang, and J. A. Duan, Metabolism-based synthesis, biological evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors, Eur. J. Med. Chem., 54, 210 (2012).   DOI
18 K, Koide, S. Osman, A. L. Garner, F. Song, T. Dixon, J. S. Greenberger, and M. W. Epperly, The use of 3,5,4'-tri-O-acetylresveratrol as a potent pro-drug for resveratrol protects mice from g-irradiation- induced death, ACS Med. Chem. Lett., 2, 270 (2011).   DOI
19 L. Ma, Y. Zhao, B. Li, Q. Wang, X. Liu, X. Chen, Y. Nan, L. Liang, R. Chang, L. Liang, P. Li, and F. Jin, 3,5,4'-tri-O-acetylresveratrol attenuates seawater aspiration-induced lung injury by inhibiting activation of nuclearfactor-kappa B and hypoxia-inducible factor- 1a, Respir. Physiol. Neurobiol., 185, 608 (2013).   DOI