Browse > Article
http://dx.doi.org/10.15230/SCSK.2015.41.2.173

Antioxidant and Tyrosinase Inhibitory Effects of the Extract Mixtures of Perilla frutescens, Houttuynia cordata and Camellia sinensis  

Lee, Kyung Eun (Department of Biotechnology, Yeungnam University)
Lee, Eun Sun (Department of Biotechnology, Yeungnam University)
Kang, Sang Gu (Department of Biotechnology, Yeungnam University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.41, no.2, 2015 , pp. 173-180 More about this Journal
Abstract
In the present study, antioxidant activities and tyrosinase inhibition of Perilla frutescens, Houttuynia cordata and Camellia sinensis extracts and the extract mixtures (PHC) were investigated. PHC showed 80.2% and 98.0% of free radical scavenging activity in DPPH and ABTS analysis, respectively, and 50% tyrosinase inhibition in $1000{\mu}g/mL$ concentration. HaCaT cells did not show cell toxicity in $100{\mu}g/mL$ of the PHC. Furthermore, HaCaT cell viability by co-culture with extract H. cordata was increased more than 10% compared with untreated cells. However, the cell viability was decreased in $500{\mu}g/mL$ of the extract C. sinensis and the PHC. These results suggested that about $100{\mu}g/mL$ concentration of the PHC showed proper tyrosinase inhibitory effect and antioxidant activities. The PHC could be used as multifunctional cosmeceutical agents.
Keywords
anti-oxidant; DPPH; ABTS; tyrosinase inhibition; cell viability;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 P. Albertazzi, S. A. Steel, E. Clifford, and M. Bottazzi, Attitudes towards and use of dietary supplementation in a sample of postmenopausal women, Climacteric, 5(4), 374 (2002).   DOI
2 J. Kedziora and G. Bartosz, Down's syndrome: a pathway involving the lack of blance of reactive oxygen species, Free Radic. Biol. Med., 4(5), 317 (1988).   DOI
3 E. E. Cross, B. Halliwell, E. T. Borish, W. A. Pryor, B. N. Ames, R. L. Saul, and J. M. McCord, Oxygen radicals and human disiease, Ann. Intren. Med., 107, 536 (1987).
4 E. Y. Sozmen, T. Tanyakin, T. Onat, F. Kufay, and S. Erlacin, Ethanol-induced oxidative stress and membrane injury in rat erythrocytes, European J. of Clinical Chem. and Clinical Biochem., 32, 741 (1994).
5 B. Frei, Academic Press, Inc., 25, ed. A Division of Harcourt Brace and Company, San Diego, California (1994).
6 I. Fridorich, The biological activity of oxygen radicals, Science, 201, 875 (1978).   DOI
7 I. A. Imlay and S. Linn, DNA damage and oxygen radical toxicity, Science, 240, 1302 (1986).
8 A. L. Branen, Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene, J. Am. Oil Chem. Soc., 52, 59 (1991).
9 S. M. Barlow, Food Antioxidant. ed. B. J. F. Hudson, 253, Elsevier, Amsterdam (1990).
10 S. J. Yang, K. S. Youn, H. K. No, S. H. Lee, and J. H. Hong, Optimization of extraction conditions for mate (Ilex paraguarensis) ethanolic extracts, Korean J. Food, 18, 319 (2011).   DOI
11 S. J. Lee, J. H. Kim, M. J. Kim, S. M. Yoon, J. C. Jeong, and N. J. Sung, Effect of garlic and medicinal plants composites on antioxidant activity and lipid levels of liver in hypercholesterolemic rats, J. Life Sci., 19, 1769 (2009).   DOI
12 Z. D. Draelos, Botanicals as topical agents, Clin. Dermatol., 19, 474 (2001).   DOI
13 A. Chiu and A. B. Kimball, Topical vitamins, minerals and botanical ingredients as modulators of environmental and chronological skin damage, Br. J. Dermatol., 149, 681 (2003).   DOI
14 N. Ahmad and H. Mukhtar, Cutaneous photochemoprotection by green tea: a brief review, Skin Pharmacol, Appl. Skin Physiol., 14, 69 (2001).   DOI
15 C. K. Chung, S. S. Ham, S. Y. Lee, D. H. Oh, S. Y. Choi, I. J. Kang, and S. M. Nam, Effects of Houttuynia cordata ethanol extracts on serum lipids and antioxidant enzymesin rats fed high fat diet, J. Korean Soc. Food Sci. Nuir., 28, 205 (1999).
16 B. J. Ha, Effects of Houttuynia cordata thunb on anti-oxidative activity against TCDD damage, J. Environ Sci., 12, 599 (2003).
17 Y. Y. Chen, J. F. Liu, C. M. Chen, P. Y. Chao, and T. J. Chang, A study of antioxidative and antimutagenic effects of Houttuynia cordata thunb using an oxidized frying oil-fed model, J. Nutr. Sci. Vitaminol, 49, 327 (2003).   DOI
18 J. Kim, H. S. Ryu, J. H. Shin, and H. S. Kim, In vitro and ex vivo supplementation of Houttuynia cordata extract and immunomodulating effect in mice, J. Korean Soc. Food Sci. Nutr., 34, 167 (2005).   DOI
19 J. H. Song, M. J. Kim, H. D. Kwon, and I. H. Park, Antimicrobial activity of fractional extracts from Houttuynia cordata root, J. Korean Soc. Food Sci. Nutr., 32, 1053 (2003).   DOI
20 E. J. Cho, T. Yokozawa, D. Y. Rhyu, H. Y. Kim, N. Shibahara, and J. C. Park, The inhibitory effects of 12 medicinal plants and their component on lipid peroxidation, Am. J. Chin. Med., 31, 907 (2003).   DOI
21 H. Ueda, C. Yamazaki, and M. Yamazaki, Inhibitory effect of Perilla leaf extract and luteolin on mouse skin tumor promotion, Biol. Pharm. Bull., 26, 560 (2003).   DOI
22 T. Makino, A. Furuta, H. Fujii, T. Nakagawa, H. Wakushima, K. Saito, and Y. Kano, Effect of oral treatment of Perilla frutescens and its constituents on type-1 allergy in mice, Biol. Pharm. Bull., 24, 1206 (2001).   DOI
23 T. Y. Shin, S. H. Kim, S. H. Kim, Y. K. Kim, H. J. Park, B. S. Chae, H. J. Jung, and H. M. Kim, Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Perilla frutescens, Immunopharmacol. Immunotoxicol., 22, 489 (2000).   DOI
24 H. A. Oh, C. Park, H. J. Ahn, Y. S. Park, and H. M. Kim, Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions, Exp. Biol. Med. (Maywood), 236, 99 (2011).   DOI
25 T. Makino, Y. Furuta, H. Wakushima, H. Fujii, K. Saito, and Y. Kano, Anti-allergic effect of Perilla frutescens and its active constituents, Phytother. Res., 17, 240 (2003).   DOI
26 M. L. Blois, Antiocidant determination by the use of a stable free radical, Nature, 181, 1199 (1958).   DOI
27 U. K. Choi, O. H. Lee, S. I. Lim, and Y. C. Kim, Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against pseudomonas aeruginosa using the evolutionary operation factorial design technique, Int. J. Mol. Sci., 11, 3922 (2010).   DOI
28 L. Meng, Y. F. Lozano, E. M. Gaydou, and B. Li, Antioxidant activities of polyphenols extracted from Perilla frutescens varieties, Molecules, 14, 133 (2008).   DOI
29 N. H. Kim, D. C. Yang, and A. H. Eom, A phylogenetic relationships of Araliaceae based on PCR-RAPD and ITS sequences, Korean J. Plant Res., 17, 82 (2004).
30 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol, Med., 26, 1231 (1999).   DOI
31 C. C. Wei, C. W. Yu, P. L. Yen, H. Y. Lin, S. T. Chang F. L. Hsu, and V. H. Liao, Antioxidant activity, delayed aging, and reduced amyloid-${\beta}$ toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia, J. Agric. Food Chem., 62(44), 10701 (2014).   DOI
32 S. Y. Qusti, A. N. Abo-khatwa, and M. A. Bin Lahwa, Screening of antioxidant activity and phenolic content of selected food items cited in the Holly Quran, Eur. J. Biol. Sci., 2, 40 (2010).
33 Y. M. Choi, M. H. Kim, J. J. Shin, J. M. Park, and J. S. Lee, The antioxidant activities of the some commercial teas, J. Kor. Soc. Nutr., 32, 723 (2003).   DOI
34 L. Milne, P. Nicotera, S. Orrenius, and M. J. Burkitt, Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Prooxidant and antioxidant properties of glutathione, Arch. Biochem. Biophys., 304, 102 (1993).   DOI
35 V. J. Hearing and M. Jimenez, Mammalian tyrosinase-The critical regulatory control point in melanocyte pigmentation, Int. J. Biochem., 19(12), 1141 (1987).   DOI
36 B. S. Wolfenden and R. L. Willson, Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions: pulse rsdiolysis studies of 2, 2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate), J. Chem. Soc. Perkin. Trans., 2, 805 (1982).
37 A. Kitahara, U. Matsumoto, H. Ueda, and R. Ueoka, A remarkable antioxidation effect of natural phenol derivatives on the autoxidation of r-irradiated methyl linolate, Chem. Pharm. Bull., 40, 2208 (1992).   DOI
38 T. Hatano, Constituents of natural medicines with scavenging effects on active oxygen species: Tannins and related polyphenols, Natural Medicines, 49(4), 357 (1995)
39 T. Kuzumaki, A. Matsuda, K. Wakamatsu, S. Ito, and K. Ishikawa, Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes, Exp. Cell Res., 207(1), 33 (1993).   DOI
40 V. del Marmol and F. Beermann, Tyrosinase and related proteins in mammalian pigmentation, FEBS Lett., 381(3), 165 (1996).   DOI
41 S. Briganti, E. Camera, and M. Picardo, Chemical and instrumental approaches to treat hyperpigmentation, Pigment Cell Res., 16(2), 101 (2003).   DOI
42 F. Solano, S. Briganti, M. Picardo, and G. Ghanem, Hypopigmenting agents: an updated review on biological, chemical and clinical aspects, Pigment Cell Res., 19(6), 550 (2006).   DOI
43 H. S. Mason and E. W. Peterson, Melanoproteins I. Reactions between enzyme-generated quinones and amino acids. Biochim. Biophys. Acta., 111, 134 (1965).   DOI
44 B. R. Lee and P. S. Park, Potentiating dietary green tea extracts anti-tumor activity of cisplatin in BALB/c mice bearing CT26 colon carcinoma, J. Kor. Soc. Food Sci. Nutr., 41(8), 1100 (2012).   DOI