Browse > Article
http://dx.doi.org/10.15230/SCSK.2013.39.4.337

Antioxidative Activities of Aronia melanocarpa Fruit and Leaf Extracts  

Lee, Hye Mi (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
Kong, Bong Ju (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
Kwon, Soon Sik (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
Kim, Kyeong Jin (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
Kim, Hae Soo (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
Jeon, So Ha (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
Ha, Ji Hoon (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
Kim, Jin-Sook (KNK Co., Ltd.)
Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.39, no.4, 2013 , pp. 337-345 More about this Journal
Abstract
In this study, the antioxidative effects of Aronia melanocarpa fruit and leaf extracts were investigated. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of the ethylacetate and aglycone fractions of fruit extracts were 16.29 ${\mu}g/mL$, and 12.29 ${\mu}g/mL$, respectively. The free radical scavenging activity of fruit extract was higher than that of leaf extracts. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of the ethylacetate and aglycone fractions of fruit extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay showed 2.86 ${\mu}g/mL$, and 1.80 ${\mu}g/mL$, respectively. ROS scavenging activity of the aglycone fraction of fruit extracts was similar to that of L-ascorbic acid (1.50 ${\mu}g/mL$). The ROS scavenging activity of fruit extracts was higher than that of leaf extracts. The cellular protective effects of aglycone fraction of fruit extracts (${\tau}_{50}$ = 72.3 min) on the $^1O_2$-induced cellular damage of human erythrocytes especially were increased in a concentration dependent manner (5 ~ 50 ${\mu}g/mL$). ${\tau}_{50}$ (72.3 min) of the aglycone fraction showed 1.9 times higher than (+)-${\alpha}$-tocopherol (38 min), known as lipophilic antioxidant at 10 ${\mu}g/mL$. These results incidicate that A. melanocarpa fruit extracts have higher antioxidant effects than leaf extracts and could be applicable to functional cosmetics materials for antioxidants by protecting skin exposed to solar UV radiation against ROS including $^1O_2$.
Keywords
Aronia melanocarpa; antioxidative activity; photoaging; cellular protective effect;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23(3), 75 (1997).
2 S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003).
3 H. Masaki, Role of antioxidants in the skin : Antiaging effects, J. Dermatol. Sci., 58, 85 (2010).   DOI   ScienceOn
4 L. Packer, Ultraviolet radiation (UVA, UVB) and skin antioxidants, In Free Radical Damage and Its Control, eds. C. A. Rice-Evans and R. H. Burdon, 239 Elsevier Science B. (1994).
5 K. J. A. Davies, Protein damage and degradation by oxygen radical, J. Biol. Chem., 262, 9895 (1987).
6 O. ten Berge, S. G. A. van Veisen, B. Glovannone, C. A.F.M. Bruljnzeel-Koomen, E. F. Knol, K. Guikers, and H. van Weelden, Assessment of cyclobutane pyrimidine dimers by digital photography in human skin, J. Immun. Methods, 373(1-2), 240 (2011).   DOI   ScienceOn
7 H. M. Chiang, H. C. Chen, H. H. Chiu, C. W. Chen, S. M. Wang, and K. C. Wen, Neonauclea reticulata (Havil.) Merr stimulates skin regeneration after UVB exposure via ROS scavenging and modulation of the MAPK/MMPs/collagen pathway, Evid. Based Complement. Alternat. Med., 2013, 9 (2013).
8 K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts, FEBS Lett., 331, 304 (1993).   DOI   ScienceOn
9 M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the ultraviolet A induced synthesis of intestitial collagenase, J. Invest. Dermatol., 104, 194 (1995).   DOI   ScienceOn
10 J. E. Kim, H. J. Lee, M. S. Lim, M. A. Park, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of Persicaria hydropiper L. extract, J. Soc. Cosmet. Scientists Korea, 38(1), 15 (2012).   DOI
11 S. N. Park, H. J. Lee, H. S. Kim, M. A. Park, and H. A. Gu, Enhanced transdermal deposition and characterization of quercetin-loaded ethosomes, Korean J. Chem. Eng., 30(3), 688 (2013).   DOI   ScienceOn
12 M. H. Lee, S. J. Kim, and S. N. Park, Development of porous cellulose-hydrogel system for enhanced transdermal delivery of quercetin and rutin, Polymer (Korea), 37(3), 347 (2013).   DOI
13 S. N. Park, M. H. Lee, S. J. Kim, and E. R. Yu, Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposomein- hydrogel complex system, Biochem. Biophys. Res. Commun., 435, 361 (2013).   DOI   ScienceOn
14 T. Tanaka and A. Tanaka, Chemical components and characteristics of black chokeberry, J. Jpn. Soc. Food Sci. Technol., 48, 606 (2001).   DOI   ScienceOn
15 J. Hudec, D. Bakosy, D. Mravec, L. Kobida, M. Burdovaa, I. Turianica, and J. Hlusyek, Content of phenolic compounds and free polyamines in black chokeberry (Aronia melanocarpa) after application of polyamine biosynthesis regulators, J. Agric. Food Chem., 54, 3625 (2006).   DOI   ScienceOn
16 L. Sueiro, G. G. Yousef, D. Seigler, E. G. DE Mejia, M. H. Grace, and M. A. Lila, Chemopreventive potential of flavonoid extracts from plantation-bred and wild Aronia melanocarpa (black chokeberry) fruits, J. Food Sci., 71(8), C480 (2006).   DOI   ScienceOn
17 K. Ohgami, I. Ilieva, K. Shiratori, Y. Koyoma, X. Jin, K. Yoshida, S. Kase, N. Kitaichi, Y. Suzuki, T. Tanaka, and S. Ohno, Anti-inflammatory effect of aronia extract on rat endotoxin-induced uveitis, Invest. Ophthalmol. Vis. Sci., 46, 275 (2005).   DOI   ScienceOn
18 A. Kokotkiewicz, Z. Jaremicz, and M. Luczkiewicz, Aronia plants: A review of traditional use, biological activities, and perspectives for modern medicine, J. Med. Food, 13(2), 255 (2010).   DOI   ScienceOn
19 J. Niedworok, B Jankowska, E. Kowalczyk, K. Charyk, and Z. Kubat, Antiulcer activity of anthocyanin from Aronia melanocarpa Elliot, Herba Polonica, 43, 222 (1997).