Browse > Article
http://dx.doi.org/10.14481/jkges.2022.23.7.11

Research Trend and Engineering Approach on Extraterrestrial Soil Sampling Technology  

Ryu, Byunghyun (Geotechnical Engineering Research Division, Korea Institute of Civil Engineering and Building Technology (KICT))
Publication Information
Journal of the Korean GEO-environmental Society / v.23, no.7, 2022 , pp. 11-20 More about this Journal
Abstract
Planetary geotechnical investigation in charge of drilling and soil sampling is of a great importance in providing extraterrestrial geotechnical information. Extraterrestrial subsurface investigation, which includes drilling, soil sampling, and sample transportation, will be loaded in a lander or a rover. Scientists from all over the world are interested in the design and development of a drilling system with various functions due to potential applications in planetary surface exploration mission. However, it is difficult to build a fully functional drilling system in extreme environment conditions. This paper presents engineering considerations for the design and development of soil sampling including drilling and performance verification in extreme environment conditions in detail.
Keywords
Planetary; Extraterrestrial; Drilling; Soil sampling; Subsurface investigation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Glass, B. J., Thompson, S. and Paulsen, G. (2005), Robotic planetary drill tests, 10th International Symposium on Artificial Intelligence, JAXA, Sapporo, Japan, pp. 1~7.
2 Hironaka, R. and Stanley, S. (2010), Lightweight low force rotary percussive coring tool for planetary applications, 40th Aerospace Mechanisms Symposium, NASA Kennedy Space Center, Florida, USA, pp. 17~30.
3 Kleinhenz, J.E., Paulsen, G., Zacny, K. and Smith, J. (2015), Impact of drilling operationson lunar volatiles capture: Thermal vacuum tests, 8th Symposium on Space Resource Utilization, Kissimmee, Florida, USA, pp. 1~13.
4 Laul, J. C., Papike, J. J. and Simon, S. B. (1982), The lunar regolith-comparative studies of the Apollo and Luna sites. Chemistry of soils from Apollo 17, Luna 16, 20, and 24, 12th Lunar and Planetary Science Conference, Vol. 12B, Houston, Texas, USA, pp. 371~388.
5 Magnani, P. G., Re, E., Senese, S., Cherubini, G. and Olivieri, A. (2006), Different drill tool concepts, Acta Astronautica, Vol. 59, pp. 1014~1019.   DOI
6 Paulsen, G., Zacny, K., Szczesiak, M., Santoro, C., Mellerowicz, B., Craft, J., McKay, C., Glass, B., Davila, A. and Marinova, M. (2011), Testing of a 1 meter Mars Icebreaker drill in a 3.5 meter vacuum chamber and in an Antarctic Mars analog site, AIAA Space 2011 Conference & Exposition, Long Beach, California, USA, pp. 7236~7324.
7 Ryu, B. H., Wang, C. C. and Chang, I. H. (2018), Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant, Journal of Aerospace Engineering, Vol. 31, pp. 04017083 (1~11).   DOI
8 Scott, R. F. and Roberson, F. I. (1968), Soil mechanics surface sampler: Lunar surface tests, results, and analyses, Journal of Geophysical Research, Vol. 73, No. 12, pp. 4045~4080.   DOI
9 Shi, H., Duan, L. and Li, T. (2011), Analysis of thermal field on the process of auger drilling simulative lunar soil, Geological Science and Technology Information, Vol. 30, No. 6, pp. 138~141 (in Chinese).   DOI
10 Stamenkovic, V., Beegle, L., Zacny, K., Arumugam, D., Baglioni, P., Barba, N., Baross, J., Bell, M., Bhartia, R. and Blank, J. (2019), The next frontier for planetary and human exploration, Nature Astronomy, Vol. 3, pp. 116~120.   DOI
11 Tang, J., Quan, Q., Jiang, S., Liang, J., Lu, X. and Yuan, F. (2017), Investigating the soil removal characteristics of flexible tube coring method for lunar exploration, Advances in Space Research, Vol. 61, No. 3, pp. 799~810.   DOI
12 Zacny, K., Bartlett, P., Davis, K., Glaser, D., Gorevan, S. and the CRUX Project Team (2006), Test results of core drilling in simulated ice-bound lunar regolith for the subsurface access system of the Construction & Resource Utilization eXplorer, Earth & Space 2006, League City/Houston, Texas, USA, pp. 1~8.
13 Tian, Y., Tang, D., Deng, Z., Jiang, S. and Quan, Q. (2015), Drilling power consumption and soil conveying volume performances of lunar sampling auger, Chinese Journal of Mechanical Engineering, Vol. 28, pp. 451~459.   DOI
14 Zacny, K. A. and Cooper, G. A. (2005), Strategies for drilling on Mars, Journal of Geophysical Research, Vol. 1 pp. 1~10.   DOI
15 Zacny, K., Bar-Cohen, Y., Brennan, M., Briggs, G., Cooper, G., Davis, K., Dolgin, B., Glaser, D., Glass, B. and Gorevan, S. (2008), Drilling systems for extraterrestrial subsurface exploration, Astrobiology, Vol. 8, pp. 665~706.   DOI
16 Zacny, K., Paulsen, G., Szczesiak, M., Craft, J., Chu, P., McKay, C., Glass, B., Davila, A., Marinova, M., Pollard, W. and Jackson, W. (2012), LunarVader: Testing of a 1 meter lunar drill in a 3.5 meter vacuum chamber and in the Antarctic lunar analog site, Journal of Aerospace Engineering, pp. 1~9.
17 Zacny, K. and Cooper, G. (2006), Considerations constraints and strategies for drilling on Mars, Planetary and Space Science, Vol. 54, No. 4, pp. 45~356.   DOI
18 Zacny, K., Paulsen, G. and Szczesiak, M. (2011), Challenges and methods of drilling on the Moon and Mars, 2011 Aerospace Conference, IEEE, Big Sky, Montana, USA, pp. 1~9.
19 Zacny, K., Quayle, M., McFadden, M., Neugebauer, A., Huang, K. and Cooper, G. (2002), A novel method for cuttings removal from holes during percussive drilling on Mars, Revolutionary Aerospace Systems Concepts-Academic Linkage, Cocoa Beach, Florida, USA, pp. 107~121.
20 Zhang, T., Ding, X., Liu, S., Xu, K. and Guan, Y. (2019), Experimental technique for the measurement of temperature generated in deep lunar regolith drilling, International Journal of Heat and Mass Transfer, Vol. 129, pp. 671~680.   DOI
21 Zheng, Y., Wang, S., Ouyang, Z., Zou, Y., Liu, J., Li, C., Li, X. and Feng, J. (2009), CAS-1 lunar soil simulant, Advances in Space Research, Vol. 43, pp. 448~454.   DOI
22 Zhao, D., Tang, D., Hou, X., Jiang, S. and Deng, Z. (2016), Soil chip convey of lunar subsurface auger drill, Advances in Space Research., Vol. 57, pp. 2196~2203.   DOI
23 Zhang, T., Zhang, Y., Xu, K., Ding, X., Wei, H., Chao, C., Wang, B. and Wang, B. (2021), Robotic drilling tests in simulated lunar regolith environment, Journal of Field Robotics, Vol. 38, pp. 1011~1035.   DOI
24 Basilevsky, A. T., Ivanov, B. A., Ivanov, A. V. and Head, J. W. (2013), Clarification of sources of material returned by Luna 24 spacecraft based on analysis of new images of the landing site taken by lunar reconnaissance orbiter, Geochemistry International, Vol. 51, pp. 456~472.   DOI
25 Zhang, T. and Ding, X. (2017), Drilling forces model for lunar regolith exploration and experimental validation, Acta Astronautica, Vol. 131, pp. 190~203.   DOI
26 Zacny, K. and Cooper, G. (2007), Coring basalt rock under simulated Martian atmospheric conditions, Mars, Vol. 3, pp. 1~11.   DOI
27 Zhang, T., Chao, C., Yao, Z., Xu, K., Zhang, W., D ing, X., Liu, S., Zhao, Z., An, Y., Wang, B., Yu, S., Wang, B. and Chen, H. (2021), The technology of lunar regolith environment construction on Earth, Acta Astronautica, Vol. 178, pp. 216~232.   DOI
28 Zhang, T., Xu, K., Yao, Z., Ding, X., Zhao, Z., Hou, X., Pang, Y., Lai, X., Zhang, W., Liu, S. and Deng, J. (2019), The progress of extraterrestrial regolith-sampling robots, Nature Astronomy, Vol. 3, pp. 487~497.   DOI
29 Cui, J., Hou, X., Deng, Z., Pan, W. and Quan, Q. (2017), Prediction of the temperature of a drill in drilling lunar rock simulant in a vacuum, Thermal Science, Vol. 21, No. 2, pp. 989~1002.   DOI
30 Zacny, K. A. and Cooper, G. A. (2007), Coring basalt under Mars low pressure conditions, International Journal of Mars Science and Exploration, Vol. 3, pp. 1~11.
31 Paulsen, G., Zacny, K., McKay, C., Shiraishi, L., Kriechbaum, K., Glass, B., Szczesiak, M., Santoro, C., Craft, J. and Malla, R. B. (2010), Rotary-percussive deep drill for planetary applications, Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, Honolulu, Hawaii, USA, pp. 1423~1436.
32 Zacny, K., Quayle, M., McFadden, M., Neugebauer, A., Huang, K. and Cooper, G. (2002), A novel method for cuttings removal from holes during percussive drilling on Mars, Revolutionary Aerospace Systems Concepts-Academic Linkage, Cocoa Beach, Florida, USA, pp. 107~121.
33 Allton, J. (1989), Catalog of Apollo lunar surface geological sampling tools and containers, Prepared for NASA/JSC Solar System Exploration Division, Contract NASA 9-17900, Job Order J2-J60 pp. 5~13.
34 Cohen, B., Badescu, M., Lee, H. J., Sherrit, S., Zacny, K., Paulsen, G., Beegle, L. Bao, X. (2016), Auto-Gopher-2 - Wireline Deep Sampler Driven by Percussive Piezoelectric Actuator and Rotary EM Motors, Advances in Science and Technology, Vol. 100, pp. 207~212.   DOI
35 Arslan, H., Batiste, S. and Sture, S. (2010), Engineering properties of lunar soil simulant JSC-1A, Journal of Aerospace Engineering, Vol. 23 pp. 70~83.   DOI
36 Backes, P., Khatib, O., Diaz-Calderon, A., Warren, J., Collins, C. and Chang, Z. (2006), Concept for coring from a low-mass rover, 2006 Aerospace Conference, IEEE, Big Sky, Montana, USA, pp. 1~10.
37 Bierhaus, E. B., Clark, B. C., Harris, J. W., Payne, K. S., Dubisher, R. D., Wurts, D. W., Hund, R. A., Kuhns, R. M., Linn, T. M., Wood, J. L. Dworkin, J. P., Beshore, E. and Lauretta, D.S. (2018), The OSIRIS-REx spacecraft and the touch-and-go sample acquisition mechanism (TAGSAM), Space Science Reviews, Vol. 214, No. 107, pp. 1~46.   DOI
38 Cui, J., Hou, X., Zhao, D., Hou, Y., Quan, Q., Wu, X., Deng, Z., Jiang, S. and Tang, D. (2014), Thermal simulation and experiment of lunar drill bit in vacuum, Indonesian Journal of Electrcal Engineering Computer Science, Vol. 12, No. 6, pp. 4756~4763.
39 Gouache, T. P., Brunskill, C., Scott, G. P., Gao, Y., Coste, P. and Gourinat, Y. (2010), Regolith simulant preparation methods for hardware testing, Planetary and Space Science, Vol. 58, pp. 1977~1984.   DOI