Browse > Article

Correlation Conditions for Marine Microalgae Isochrysis galbana under Illumination of Light Emitting Diodes  

Choi, Boram (부경대학교 환경해양대학 환경공학과 대학원)
Kim, Dongsoo (부경대학교 수산과학대학 해양바이오신소재공학과)
Lee, Taeyoon (부경대학교 환경해양대학 환경공학과)
Publication Information
Journal of the Korean GEO-environmental Society / v.13, no.10, 2012 , pp. 63-68 More about this Journal
Abstract
This study was performed to determine optimum conditions of batch type cultivation of Isochrysis galbana cultivated under various wavelengths of light emitting dioes (LEDs). Among LEDs used in the cultivation, white LED was found to be the most effective light source, and light intensity of 3,000Lux resulted in the most effective for the cultivation of Isochyrysis galbana. Comparison with common light source, fluorescent light, showed less effective than that with white LED. Four different air flow rates were tested to overcome shading effects due to denser cell concentration in the solution. In results, cell growth rates and maximum cell concentrations were similar regardless of air flow rates. Three times greater cell concentrations, however, were observed when air was applied.
Keywords
Light Emitting Diodes; I. galbana; White LED; Fluorescent light; Air flow rates;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Katsuda, T., Lababpour, A., Shimahara, K. and Katoh, S.(2004), Astaxanthin Production by Haematococcus Pluvialis under Illumination with LEDs, Enzyme Microb. Technol., Vol. 35, No. 4, pp. 81-86.   DOI
2 Lee, C. G. and Palsson, B. O.(1994), High-density Algal Photo -bioreactors using Light-emitting Diodes, Biotechnol. Bioengr., Vol. 44, No. 3, pp. 1161-1167.   DOI
3 Lee, T., Choi, B., Lee, J. and Lim, J.(2011), Cultivation of Chlorella sp. Using Light Emitting Diode, J. Korea Environ. Engr., Vol. 33, No. 8, pp. 591-597.   DOI
4 Lim, Y. K., Shin, S. C., Yim, E. S. and Song, H. O.(2008), The Effective Product Method of Biodisel, J. Korean Ind. Eng. Chem., Vol. 19, No. 4, pp. 137-144.
5 Mata, T., Martins, A. and Caetano, N.(2010), Microalgae for Biodiesel Production and Other Applications: A Review, Renewable Sustainable Energy Review, Vol. 14, No. 2, pp. 217-232.   DOI
6 Ojala, A.(1993), Effects of Temperature and Irradiance on the Growth of Two Freshwater Photosynthetic Cryptophytes., J. Phycol., Vol. 29, No. 4, pp. 278-284.   DOI
7 Park, J. I., Woo, H. C. and Lee, J. H.(2008), Production of Bio-Energy from Marine Algae : Status and Perspectives, Korea Chem. Eng. Res., Vol. 46, No. 5, pp. 833-844.
8 Patil, V., Kallqvist, R., Olsen, E., Vogt, G. and Gislerod, H.(2007), Fatty Acid Composition of 12 Microalgae for Possible Use in Aquaculture Feed, Aquacult Int., Vol. 15, pp. 1-9.   DOI   ScienceOn
9 Pulz, O., Gerbsch, N. and Buchholz, R.(1995), Light Energy Supply in Plate and Light Diffusing Optical Fiber Bioreactors., J. Appl. Phycology, Vol. 7, No. 1, pp. 145-149.   DOI
10 Sanchez, S., Martinez, M. E. and Espinola, F.(2000), Biomass Production and Biochemical Variability of the Marine Microalga Isochrysis Galbana in Relation to Culture Medium, J. Biochmical Engineering, Vol. 6, No. 1, pp. 13-18.   DOI   ScienceOn
11 Sefa, A.(2011), Comparison of Isochrysis Galbana and Chlorella sp. Microalgae on Growth and Survival Rate of European Flat Oyster(Ostrea edulis, Linnaeus 1758) larvae, Ind. J. Geo-Marine Sci., Vol. 40, No. 1, pp. 55-58.
12 Tredici, M. R., Carlozzi, P., Zittelli, G. C., and Materassi, R.(1991), A Vertical Alveolar Panel(VAP) for Outdoor Mass Cultivation of Microalgae and Cyanobacteria, Bioresource Technol., Vol. 38, No. 2, pp. 153-160.   DOI
13 Wang, C. Y., Fu, C. C. and Liu, Y. C.(2007), Effects of using Light-emitting Diodes on the Cultivation of Spirulina platensis, Biochem. Eng. J., Vol. 37, No. 4, pp. 21-25.   DOI
14 Bouaran, G., Dean, L. L., Lukomska E., Kaas, R. and Baron, R.(2003), Transient Initial Phase in Continuous Culture of Isochrysis Galbana Affinis Tahiti, Aquat. Living Resours, Vol. 16, No. 4, pp. 389-394.   DOI   ScienceOn
15 Burgess, J. G., Iwamoto, K., Miura, Y., Takano, H. and Matunaga, T.(1993), An Optical Fiber Photobioreactor for Enhanced Production of the Marine Unicellular Alga Isochrysis aff. Galbana T-Iso(UTEX LB2307) Rich in Docosahexaenoic Acid, Appl. Microbiol. Biotechnol., Vol. 39, No. 2, pp. 456-459.   DOI
16 Gabriel Bitton(1996), Wastewater Microbiology, John Wiley & Son, N. Y., pp. 68-75.
17 Chen, C. Y., Saratale, G. D., Lee, C. M., Chen, P. C. and Chang, J. S.(2008), Phototrophic Hydrogen Production in Photo -bioreactors Coupled with Solar-energy-excited Optical Fibers, Int. J. Hydrogen Energ., Vol. 33, No. 2, pp. 6878-6885.   DOI
18 Choi, S. H., Oh, Y. T. and So, J. K.(2006), Characterisrics of Exhaust Emission by the Application of Biodiesel Fuel and Oxygenates as an Alternative Fuel in an Agricultural Diesel Engine, J. of Biosystems Eng,. Vol. 31, No. 7, pp. 457-462.   DOI
19 Enright, C. T., Newkirk, G. F., Craigie, J. S. and Castell, J. D.(1986), Evaluation of Phytoplankton as Diets for Juvenile Ostrea edulis. L, J. of Experimental Marine Biol. and Ecol., Vol. 96, No. 7, pp. 1-13.   DOI
20 Guillard, R. R. L. and Ryther, D.(1962), Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea(Cleve) Gran, Can. J. Microbiol., Vol. 8, No. 3, pp. 229-239.   DOI
21 Hamasaki, A., Shioji, N., Ikuta, Y., Hukuda, Y., Makita, T., Hirayama, K., Matuzaki, H., Tukamato, T. and Sasake, S.(1994), Carbon Dioxide Fixation by Microalgae Photosynthesis using Actual Flue Gas, Biochem. Biotechnol., Vol. 45, No. 1, pp. 79 9-809.
22 Han, B. P.(2002), A Mechanistic Model of Photo-Inhibition Induced by Photodamage to Photosystem, J. Theor. Biol., Vol. 214, No. 2, pp. 519-527.   DOI
23 Hirata, S., Taya, M. and Tone, S.(1996), Characterization of Chlorella Cell Cultures in Batch and Continuous Operations under a Photoautotrophic Condition, J. Chem. Eng., Vol. 29, No. 6, pp. 953-959.   DOI   ScienceOn
24 Javanmardian, M. and Palsson, B. O.(1991), High Density Photoaurotrophic Cultures - Design, Construction and Operation of a Noble Photobioreactor System, Biotechnol. Bioeng., Vol. 38, No. 2, pp. 1182-1189.   DOI