Browse > Article
http://dx.doi.org/10.7778/jpkm.2020.34.1.37

Genistein Recovers Dermatitis Damage through Endocannabinoid System (ECS) Activity  

Ahn, Sang Hyun (Dept. of anatomy, college of Korean Medicine, Semyung University)
Seo, Il Bok (Dept. of anatomy, college of Korean Medicine, Semyung University)
Kim, Ki Bong (School of Korean Medicine, Pusan National University)
Publication Information
The Journal of Pediatrics of Korean Medicine / v.34, no.1, 2020 , pp. 37-47 More about this Journal
Abstract
Objectives After inducing dermatitis in 6-week-old mice, we tried to find out the effects of recovery in the damaged skin by administering genistein and palmitoylethanolamide (PEA) Methods The 6-week-old mice were divided into the control group (Ctrl), dermatitis causing group (AcDE), genistein-administered group after the onset of dermatitis (GsT), and PEA-administered group after the onset of dermatitis (PEAT). Seven mice were assigned to each group. Changes in the skin barrier were observed after three days of administration following the onset of dermatitis. Results In the GsT and PEAT, there was less skin damage compared to the AcDE, and the lowest skin damage showed in the GsT. The intensity of CB1 and CB2 expression was increased by 64% (CB1) and 39% (CB2) in the GsT, and 38% (CB1) and 28% (CB2) in the PEAT compared to the AcDE. The E-catherin positive reaction was decreased in the AcDE, while the E-catherin positive reaction was increased in the GsT (76%) and PEAT (34%). The p-JNK positive reaction was increased in the AcDE, while the p-JNK positive reaction was decreased in the GsT (60%) and PEAT (39%). Toxic Hepatopathy was not observed in the liver tissue of Genistein administered 3OGsT, and PEA administered 3OPEAT. Conclusions Genistein has recovery effect on dermatitis damage through active induction of the endocannabin system (ECS).
Keywords
Genistein; dermatitis; Endocannabinoid system (ECS); CB1; CB2; p-JNK;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 T.A. Luger. Neuromediators--a crucial component of the skin immune system. J Dermatol Sci. 2002;30(2):pp.87-93.   DOI
2 M. Maccarrone, M. Di Rienzo, N. Battista, V. Gasperi, P. Guerrieri, A. Rossi, A. Finazzi-Agro. The Endocannabinoid System in Human Keratinocytes: Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem. 2003;278(36):pp.33896-903.   DOI
3 M. Karsak, E. Gaffal, R. Date, L. Wang-Eckhardt, J. Rehnelt, S. Petrosino. Attenuation of Allergic Contact Dermatitis Through the Endocannabinoid System. Science. 2007;316(5830):pp.1494-97.   DOI
4 M.L. Casanova, C. Blazquez, J. Martinez-Palacio, C. Villanueva, M.J. Fernandez-Acenero, J.W. Huffman, J.L. Jorcano, M. Guzman. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest. 2003;111(1):pp.43-50.   DOI
5 E. Gaffal, M. Cron, N. Glodde, T. Bald, R. Kuner, A. Zimmer, B. Lutz, T. Tuting. Cannabinoid 1 receptors in keratinocytes modulate proinflammatory chemokine secretion and attenuate contact allergic inflammation. J Immunol. 2013;190(10):pp.4929-36.   DOI
6 B.K. Srivastava, R. Soni, JZ. Patel, A. Joharapurkar, N. Sadhwani, S. Kshirsagar, B. Mishra. V. Takale, S. Gupta, P. Pandya, P. Kapadnis, M. Solanki, H. Patel, P. Mitra, M. R. Jain, P.R. Patel. Hair growth stimulator property of thienyl substituted pyrazole carboxamide derivatives as a CB1 receptor antagonist with in vivo antiobesity effect. Bioorg Med Chem Lett. 2009;19(9):pp.2546-50.   DOI
7 N. Dobrosi, B.I. Toth, G. Nagy, A. Dozsa, T. Geczy, L. Nagy, C.C. Zouboulis, R. Paus, L. Kovacs, T. Biro. Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling. FASEB J. 2008;22(10):pp.3685-95.   DOI
8 J.M. Walker, A.G. Hohmann. Cannabinoid mechanisms of pain suppression. Handb Exp Pharmacol. 2005;168:pp.509-54.   DOI
9 M.D. Jhaveri, D. Richardson, V. Chapman. Endocannabinoid metabolism and uptake: novel targets for neuropathic and inflammatory pain. Br J Pharmacol. 2007;152(5):pp.624-32.   DOI
10 B.I. Toth, N. Dobrosi, A. Dajnoki, G. Czifra, A. Olah, A.G. Szollosi, I. Juhasz, K. Sugawara, R. Paus, T. Biro. Endocannabinoids Modulate Human Epidermal Keratinocyte Proliferation and Survival via the Sequential Engagement of Cannabinoid Receptor-1 and Transient Receptor Potential Vanilloid-1. J Invest Dermatol. 2011;131(5):pp.1095-104.   DOI
11 K.F. Toth, D. Adam, T. Biro, A. Olah. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules. 2019;24(5):pp.918.   DOI
12 H.Y. Lee. Improvement of skin barrier dysfunction by Scutellaria baicalensis GEOGI extracts through lactic acid fermentation. J Cosmet Dermatol. 2019;18(1):pp.183-91.   DOI
13 W. Peng, N. Novak. Pathogenesis of atopic dermatitis. Clin Exp Allergy. 2015;45(3):pp.566-74.   DOI
14 K. Kabashima. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci. 2013:70(1):pp.3-11.   DOI
15 P.M. Elias, L.C. Wood, K.R. Feingold. Epidermal pathogenesis of inflammatory dermatoses. Am J Contact Dermat. 1999:10(3);pp.119-26.   DOI
16 A.R. Jung, S.H. Ahn, I.S. Park, S.Y. Park, S.I. Jeong, J.H. Cheon, K. Kim. Douchi (fermented Glycine max Merr.) alleviates atopic dermatitis-like skin lesions in NC/Nga mice by regulation of PKC and IL-4. BMC Complement Altern Med. 2016;16:Article No.416.
17 S. Li, Z.Q. Zhang, L.J. Wu, X.G. Zhang, Y.D. Li, Y.Y. Wang. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol. 2007;1(1):pp.51-60.   DOI
18 R.A. Muluye, Y. Bian, P.N. Alemu. Anti-inflammatory and Antimicrobial Effects of Heat-Clearing Chinese Herbs: A Current Review. J Tradit Complement Med. 2014;4(2):pp.93-98.   DOI
19 P.S. Qinghu He, Yanhong Zhang. TCM Case Studies: External Medicine. 1st edition, Beijing, PEOPLE'S MEDICAL PUBLISHING HOUSE, 2014.
20 H.Y. Cha, S.H. Ahn, J.H. Cheon, I.S. Park, J.T. Kim, K. Kim. Hataedock Treatment Has Preventive Therapeutic Effects in Atopic Dermatitis-Induced NC/Nga Mice under High-Fat Diet Conditions. Evid Based Complement Alternat Med. 2016;2016:1739760.
21 H.Y. Kim, S.H. Ahn, I.J. Yang, K. Kim. Effect of Skin Lipid Barrier Formation on Hataedock Treatment with Douchi. J Korean Med. 2017;38(2):pp.41-52.   DOI
22 J.H. Song, S.H. Ahn, J.H. Cheon, S.Y. Park, H.H. Kim, K. Kim. Effects of Hataedock with Douchi on 2,4-dinitrofluorobenzene-induced Atopic Dermatitislike Skin Lesion in NC/Nga Mice. J Physiol & Pathol Korean Med. 2016;30(2):pp.109-15.   DOI
23 J.M. McPartland, G.W. Guy, V. Di Marzo. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PloS one. 2014;9(3):e89566.   DOI
24 V. Di Marzo. New approaches and challenges to targeting the endocannabinoid system. Nat Rev Drug Discov. 2018;17(9):pp.623-39.   DOI
25 L.K. Miller, L.A. Devi. The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev. 2011;63(3):pp.461-70.   DOI
26 G. Imokawa, A. Abe, K. Jin, Y. Higaki, M. Kawashima, A. Hidano. Decreased Level of Ceramides in Stratum Corneum of Atopic Dermatitis: An Etiologic Factor in Atopic Dry Skin?. J Invest Dermatol. 1991;96(4):pp.523-6.   DOI
27 J. Manzanares, M. Julian, A. Carrascosa. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes. Curr Neuropharmacol. 2006;4(3):pp.239-57.   DOI
28 P. Pacher, S. Batkai, G. Kunos. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev. 2006;58(3);pp.389-462.   DOI
29 L. Thors, J.J. Burston, B.J. Alter, M.K. Mckinney, B.F. Cravatt, R.A. Ross, R.G. Pertwee, R.W. Gereau, J.L. Wiley, C.J. Fowler. Biochanin A, a naturally occurring inhibitor of fatty acid amide hydrolase. Br J Pharmacol. 2010;160(3):pp.549-60.   DOI
30 A. Dizamatova, K. Zhumanova, G.E. Zhusupova, A.I. Zhussupova, R. Srivedavyasasri, M.A. Ibrahim, S.A. Ross. A New Prenylated Isoflavonoid From Limonium leptophyllum. Nat Prod Commun. 2019;14(5):1934578X19844137.
31 K. Natsuga. Epidermal barriers. Cold Spring Harb Perspect Med. 2014;4(4):a018218.   DOI
32 C. Blanpain, E. Fuchs. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009;10(3):pp.207-17.   DOI
33 J.K. Kim, J.H. Lee, I.H. Bae, D.B. Seo, S.J. Lee. Beneficial Effect of a Collagen Peptide Supplement on the Epidermal Skin Barrier. Korean J Food Sci Tech. 2011;43(4):pp.458-63.   DOI
34 Kim BB, Kim JR, Kim JH, Kim YA, Park JS, Yeom MH, Lee HJ, Lee KW, Kang NJ. 7, 3', 4'-Trihydroxyisoflavone ameliorates the development of Dermatophagoides farinae-induced Atopic Dermatitis in NC/Nga Mice. Evid Based Complement Alternat Med. 2013;2013:636597
35 Irvine AD, McLean WH. Breaking the (un)sound barrier: filaggrin is a major gene for atopic dermatitis. J Invest Dermatol. 2006;126:1200-02.   DOI
36 C.N. Palmer, A.D. Irvine, A. Terron-Kwiatkowski, Y. Zhao, H. Liao, S.P. Lee, D.R. Goudie, A. Sandilands, L.E. Campbell, F.J. Smith, G.M. O'Regan, R.M. Watson, J.E. Cecil, S.J. Bale, J.G. Compton, J.J. DiGiovanna, P. Fleckman, S. Lewis-Jones, G. Arseculeratne, A. Sergeant, C.S. Munro, B.E. Houate, K. McElreavey, L.B. Halkjaer, H. Bisgaard, S. Mukhopadhyay, W.H. McLean. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441-6.   DOI
37 M. Salzet. Invertebrate molecular neuroimmune processes. Brain Res Rev, 2000;34(1):pp.69-79.   DOI
38 O'Regan GM, Irvine AD. The role of filaggrin in the atopic diathesis. Clin Exp Allergy. 2010;40:965-72.   DOI
39 Barnes KC. An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol. 2010;125(1):16-29.   DOI
40 P. Kupczyk, A. Reich, J.C. Szepietowski. Cannabinoid system in the skin - a possible target for future therapies in dermatology. Exp Dermatol. 2009;18(8):pp.669-79.   DOI
41 H. Yang, J. Zhou, C. Lehmann. GPR55 - a putative "type 3" cannabinoid receptor in inflammation. J Basic Clin Physiol Pharmacol. 2016;27(3):pp.297-302.   DOI
42 G. Nam, S.K. Jeong, B.M. Park, S.H. Lee, H.J. Kim, S.P. Hong, B. Kim, B.W. Kim. Selective Cannabinoid Receptor-1 Agonists Regulate Mast Cell Activation in an Oxazolone-Induced Atopic Dermatitis Model. Ann Dermatol, 2016;28(1):pp.22-9.   DOI
43 H.J. Kim, B. Kim, B.M. Park, J.E. Jeon, S.H. Lee, S. Mann, S.K. Ahn, S.P. Hong, S.K. Jeong. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model. Int J Dermatol. 2015;54(10):pp.401-8.
44 T. Haruna, M. Soga, Y. Morioka, K. Imura, Y. Furue, M. Yamamoto, J. Hayakawa, M. Deguchi, A. Arimura, K. Yasui. The Inhibitory Effect of S-777469, a Cannabinoid Type 2 Receptor Agonist, on Skin Inflammation in Mice. Pharmacology. 2017;99(5-6):pp.259-67.   DOI
45 G. Cantarella, M. Scollo, L. Lempereur, G. Saccani-Jotti, F. Basile, R. Bernardini. Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells. Biochem Pharmacol. 2011;82(4):pp.380-8.   DOI
46 Q. Tan, H. Yang, E. Liu, H. Wang. P38/ERK MAPK signaling pathways are involved in the regulation of filaggrin and involucrin by IL-17. Mol Med Rep. 2017;16(6):pp.8863-67.   DOI
47 J.P. Thiery, J.P. Sleeman. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):pp.131-42.   DOI
48 P.F. Cheung, C.K. Wong, A.W Ho, S. Hu, D.P. Chen, C.W. Lam. Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Int Immunol. 2010;22(6):pp.453-67.   DOI
49 S. Arbabi, R.V. Maier. Mitogen-activated protein kinases. Crit Care Med. 2002;30(1) Suppl:pp.s74-9.   DOI