Browse > Article
http://dx.doi.org/10.23005/ksmls.2022.7.2.129

Effects on Lethal Concentration 50%, Hematological Parameters and Plasma Components of Crucian carp, Carassius carassius Exposed to Waterborne Zinc  

Ji-Ho, Jeong (Sun Moon University, Department of Aquatic Life and Medical Science)
Chang-Hoon, Joo (Sun Moon University, Department of Aquatic Life and Medical Science)
A-Hyun, Jo (Sun Moon University, Department of Aquatic Life and Medical Science)
Su-Min, Hong (Sun Moon University, Department of Aquatic Life and Medical Science)
Yun-A, Ryu (Sun Moon University, Department of Aquatic Life and Medical Science)
Seock-Won, Jo (Sun Moon University, Department of Aquatic Life and Medical Science)
Jun-Hwan, Kim (Sun Moon University, Department of Aquatic Life and Medical Science)
Publication Information
Journal of Marine Life Science / v.7, no.2, 2022 , pp. 129-138 More about this Journal
Abstract
Crucian carp, Carassius carassius (Weight 42.4 ± 9.0 g, Length 15.0 ± 1.0 cm) were exposed to waterborne zinc at 0, 5, 10, 20, 40 and 80 mg Zn2+/l for 96 hours. The lethal concentration 50 (LC50) at 96 hours of crucian carp, C. carassius exposed to waterborne zinc was 51.58 mg Zn2+/l. In hematological parameters, the RBC count was significantly decreased in the concentration of 40 mg Zn2+/l at 48 hours, whereas the hematocrit was significantly increased by zinc exposure. The MCV (mean corpuscular volume) (µl) and MCH (mean corpuscular hemoglobin) (pg) were significantly increased in the concentration of 40 mg Zn2+/l at 48 hours. The plasma components such as calcium, magnesium, glucose, cholesterol, total protein and ALT (Alanine aminotransminase) were significantly changed by zinc exposure. The results of this study suggest that the zinc exposure to C. carassius induced the significant physiological changes in the hematological parameters and plasma components as toxicity.
Keywords
Zinc exposure; $LC_{50}$; Hematological parameters; Plasma components; Mirror carp;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abdel-Warith AA, Younis EM, Al-Asgah NA, Wahbi OM. 2011. Effect of zinc toxicity on liver histology of Nile tilapia, Oreochromis niloticus. Scientific Research and Essays 6: 3760-3769.    DOI
2 Abdel-Tawwab M. 2016. Effect of feed availability on susceptibility of Nile tilapia, Oreochromis niloticus (L.) to environmental zinc toxicity: Growth performance, biochemical response, and zinc bioaccumulation. Aquaculture 464: 309-315.    DOI
3 Andres S, Ribeyre F, Tourencq JN, Boudou A. 2000. Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Science of the Total Environment 248: 11-25.    DOI
4 Atli G, Ariyurek SY, Kanak EG, Canli M. 2015. Alterations in the serum biomarkers belonging to different metabolic systems of fish (Oreochromis niloticus) after Cd and Pb exposures. Environ- mental Toxicology and Pharmacology 40: 508-515.    DOI
5 Canli M, Atli G. 2003. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution 121: 129-136.    DOI
6 Cao Q, Chu P, Gu J, Zhang H, Feng R, Wen X, Yin S. 2020. The influence of Ca2+ concentration on voltage-dependent L-type calcium channels' expression in the marbled eel (Anguilla marmorata). Gene 722: 144101. 
7 Celik ES, Kaya H, Yilmaz S, Akbulut M, Tulgar A. 2013. Effects of zinc exposure on the accumulation, haematology and immunology of Mozambique tilapia, Oreochromis mossambicus. African Journal of Biotechnology 12: 744-753. 
8 Elnabris KJ, Muzyed SK, El-Ashgar NM. 2013. Heavy metal concentrations in some commercially important fishes and their contribution to heavy metals exposure in Palestinian people of Gaza Strip (Palestine). Journal of the Association of Arab Universities for Basic and Applied Sciences 13: 44-51. 
9 Fazio F. 2019. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture 500: 237-242.    DOI
10 Franco JL, Trivella DB, Trevisan R, Dinslaken DF, Marques MR, Bainy AC, Dafre AL. 2006. Antioxidant status and stress proteins in the gills of the brown mussel Perna perna exposed to zinc. Chemico-Biological Interactions 160: 232-240.    DOI
11 Javed M, Shelke A, Ogundiran M. 2008. Bioaccumulation Pattern of Zinc in Freshwater Fish Channa punctatus (Bloch.) A er Chronic Exposure. Turkish Journal of Fisheries and Aquatic Sciences 8: 55-59. 
12 Harper LR, Griffiths NP, Lawson Handley L, Sayer CD, Read DS, Harper KJ, Hanfling B. 2019. Development and application of environmental DNA surveillance for the threatened crucian carp (Carassius carassius). Freshwater Biology 64: 93-107.    DOI
13 Hogstrand C, Balesaria S, Glover CN. 2002. Application of genomics and proteomics for study of the integrated response to zinc exposure in a non-model fish species, the rainbow trout. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 133: 523-535.    DOI
14 Horie Y, Yonekura K, Suzuki A, Takahashi C. 2020. Zinc chloride influences embryonic development, growth, and Gh/Igf-1 gene expression during the early life stage in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 230: 108684. 
15 Javed M, Usmani N. 2015. Stress response of biomolecules (carbohydrate, protein and lipid profiles) in fish Channa punctatus inhabiting river polluted by Thermal Power Plant effluent. Saudi Journal of Biological Sciences 22: 237-242.    DOI
16 Kaya H, Duysak M, Akbulut M, Yilmaz S, Gurkan M, Arslan Z, Ates M. 2017. Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus). Environmental Toxicology 32: 1213-1225.    DOI
17 Khan GB, Akhtar N, Khan MF, Ullah Z, Tabassum S, Tedesse Z. 2022. Toxicological impact of zinc nano particles on tilapia fish (Oreochromis mossambicus). Saudi Journal of Biological Sciences 29: 1221-1226.    DOI
18 Kim U. 2004. Seawater desalination to solve water problems and diversify water sources in island areas. Korea Water and Wastewater Works Association 58-69. 
19 Kim JH, Kang JC. 2015. The lead accumulation and hematological findings in juvenile rock fish Sebastes schlegelii exposed to the dietary lead (II) concentrations. Ecotoxicology and Environmental Safety 115: 33-39.    DOI
20 Kim JH, Choi H, Sung G, Seo SA, Kim KI, Kang YJ, Kang JC. 2019. Toxic effects on hematological parameters and oxidative stress in juvenile olive flounder, Paralichthys olivaceus exposed to waterborne zinc. Aquaculture Reports 15: 100225.    DOI
21 Lall SP, Kaushik SJ. 2021. Nutrition and metabolism of minerals in fish. Animals 11: 2711. 
22 Madhusudan S, Liyaquat FATMA, Nadim CHISHTY. 2003. Bioaccumulation of zinc and cadmium in freshwater fishes. Indian Journal of Fisheries 50: 53-65. 
23 McRae NK, Gaw S, Glover CN. 2016. Mechanisms of zinc toxicity in the galaxiid fish, Galaxias maculatus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 179: 184-190.    DOI
24 Modesto KA, Martinez CB. 2010. Effects of Roundup Transorb on fish: hematology, antioxidant defenses and acetylcholinesterase activity. Chemosphere 81: 781-787.    DOI
25 Mohiseni M, Sepidnameh M, Bagheri D, Banaee M, Nematdust Haghi B. 2017. Comparative effects of S hirazi thyme and vitamin E on some growth and plasma biochemical changes in common carp (Cyprinus carpio) during cadmium exposure. Aquaculture Research 48: 4811-4821.    DOI
26 Ololade IA, Ogini O. 2009. Behavioural and hematological effects of zinc on African catfish, Clarias gariepinus. International Journal of Fisheries and Aquaculture 1: 22-27. 
27 Puar P, Niyogi S, Kwong RW. 2020. Regulation of metal homeostasis and zinc transporters in early-life stage zebrafish following sublethal waterborne zinc exposure. Aquatic Toxicology 225: 105524. 
28 Oner M, Atli G, Canli M. 2008. Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environmental Toxicology and Chemistry: An International Journal 27: 360-366.    DOI
29 Palaniappan PR, Nishanth T, Renju VB. 2010. Bioconcentration of zinc and its effect on the biochemical constituents of the gill tissues of Labeo rohita: An FT-IR study. Infrared Physics & Technology 53: 103-111.    DOI
30 Papagiannis I, Kagalou I, Leonardos J, Petridis D, Kalfakakou V. 2004. Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environment International 30: 357-362.    DOI
31 Qu R, Feng M, Wang X, Qin L, Wang C, Wang Z, Wang L. 2014. Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus following in vivo exposure to waterborne zinc under different pH values. Aquatic Toxicology 150: 9-16. 
32 Remyla SR, Ramesh M, Sajwan KS, Senthil Kumar K. 2008. Influence of zinc on cadmium induced haematological and biochemical responses in a freshwater teleost fish Catla catla. Fish Physiology and Biochemistry 34: 169-174.    DOI
33 Rufli H. 2012. Introduction of moribund category to OECD fish acute test and its effect on suffering and LC50 values. Environmental Toxicology and Chemistry 31: 1107-1112.    DOI
34 Sankhla MS, Kumar R, Prasad L. 2019. Zinc impurity in drinking water and its toxic effect on human health. Indian Congress of Forensic Medicine & Toxicology. 
35 Shah N, Khan A, Ali R, Marimuthu K, Uddin MN, Rizwan M, Khisroon M. 2020. Monitoring bioaccumulation (in gills and muscle tissues), hematology, and genotoxic alteration in Ctenopharyngodon idella exposed to selected heavy metals. BioMed Research International. 
36 Saravanan M, Kumar KP, Ramesh M. 2011. Haematological and biochemical responses of freshwater teleost fish Cyprinus carpio (Actinopterygii: Cypriniformes) during acute and chronic sublethal exposure to lindane. Pesticide Biochemistry and Physiology 100: 206-211.    DOI
37 Sfakianakis DG, Renieri E, Kentouri M, Tsatsakis AM. 2015. Effect of heavy metals on fish larvae deformities: a review. Environmental Research 137: 246-255.    DOI
38 Shah AI. 2017. Heavy metal impact on aquatic life and human health-an over view. In IAIA17 Conference Proceedings| IA's Contribution in Addressing Climate Change 37th Annual Conference of the International Association for Impact Assessment. 
39 Tripathi S, Mishra BB, Tripathi SP. 2012. Impact of zinc sulphate on biochemical parameters in reproductive cycle of Colisa fasciatus. Int J of Bas and App Sci 1: 250-254. 
40 Tuncsoya M, Durana S, Yesilbudaka B, Ayb O, Cicikb B, Erdem C. 2016. Short term effects of zinc on some sera biochemical parameters and tissue accumulation of Clarias gariepinus. Fres Environ Bull 2: 658-664. 
41 Velcheva, IG. 2006. Zinc content in the organs and tissues of freshwater fish from the Kardjali and Studen Kladenets Dam Lakes in Bulgaria. Turkish Journal of Zoology 30: 1-7. 
42 Vidya PV, Chitra KC. 2017. Assessment of acute toxicity (LC50-96 h) of aluminium oxide, silicon dioxide and titanium dioxide nanoparticles on the freshwater fish, Oreochromis mossambicus (Peters, 1852). International Journal of Fisheries and Aquatic Studies 5: 327-332. 
43 Yu SJ, Park SJ, Ahn KH, Kim HG, Kim CS, Jung IR, Park YB. 2008. The Corrosion Effect of the Water Pipelines in Buildings according to Drinking Water Quality. Korean Society on Water 24: 701-708. 
44 Vollestad LA, Varreng K, Poleo ABS. 2004. Body depth variation in crucian carp Carassius carassius: An experimental individual-based study. Ecology of Freshwater Fish 13: 197-202.    DOI
45 Witeska M. 2005. Stress in fish-hematological and immunological effects of heavy metals. Electronic Journal of Ichthyology 1: 35-41. 
46 Yang Z, Huang S, Kong W, Yu H, Li F, Khatoon Z, Akram W. 2021. Effect of different fish feeds on water quality and growth of crucian carp (Carassius carassius) in the presence and absence of prometryn. Ecotoxicology and Environmental Safety 227: 112914. 
47 Zheng JL, Luo Z, Chen QL, Liu X, Liu CX, Zhao YH, Gong Y. 2011. Effect of waterborne zinc exposure on metal accumulation, enzymatic activities and histology of Synechogobius hasta. Ecotoxicology and Environmental Safety 74: 1864-1873.    DOI