Browse > Article
http://dx.doi.org/10.12673/jant.2011.15.2.248

Transmission Performance of 960 Gbps WDM Signals Depends on Dispersion Compensation Configurations  

Lee, Seong-Real (Div. of Marine Electro. & Comm. Eng., Mokpo National Maritime University)
Abstract
An investigation has been carried out, by computer simulation, to evaluate the impact of dispersion compensation configurations on 960 Gbps wavelength division multiplexed (WDM) system with optical phase conjugator (OPC). The considered dispersion compensation configurations in this research are conventional one-end type and bi-end type. One-end and bi-end type are made by using one dispersion compensating fiber (DCF) and two DCFs to decrease dispersion accumulated in one single mode fiber (SMF) span, respectively. It is found that bi-end compensation configuration offers the equal performance with that of one-end configuration in WDM system with residual dispersion per span (RDPS) of 400 ps/nm if net residual dispersion (NRD) had to be optimized in each cases.
Keywords
Bi-end configuration; One-end configuration; Inline dispersion management; Net residual dispersion; Residual dispersion per span; Optical phase conjugator;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. Henmi, T. Saito, and S. Nakaya, "An arrangement of transmission fiber dispersions for increasing the spacing between optical amplifiers in lumped repeater systems," IEEE Photonics Technol. Lett,. vol. 5, pp. 1337-1340, 1993.
2 A. Naka and S. Saito, "Transmission distance of in-line amplifier systems with group-velocity- dispersion compensation," J. Lightwave Technol., vol. 13, pp. 862-867, 1995.   DOI   ScienceOn
3 C. C. Chang and A. M. Weiner, "Fiber transmission for sub-500-fs pulses using a dispersion-compensating fiber,"" IEEE J. Quantum Electron., vol. 33, pp. 1455-1464, 1997.   DOI   ScienceOn
4 S. Bigo and A. Bertaina, "WDM transmission experiments at 32${\times}$10 Gb/s over nonzero dispersion-shifted fiber and standard single mode fiber," IEEE Photonics Technol. Lett., vol. 11, pp. 1316-1318, 1999.
5 A. H. Gnauck, J. M. Wiesenfeld, L. D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli, and D. Scarano, "16${\times}$20 Gb/s, 400 km WDM transmission over NZDSF using a slope compensating fiber-grating module," IEEE Photonics Technol. Lett. vol. 12, pp. 437-439, 2000.
6 J. Wang and K. Petermann, "Small signal analysis for dispersive optical fiber communication systems," J. Lightwave Technol. vol. 10, pp. 96-100, 1992.   DOI   ScienceOn
7 G. Belotti, M. Varai, C. Francia, and A. Bononi, "Intensity distortion induced by cross-phase modulation and chromatic dispersion in optical-fiber transmissions with dispersion compensation," IEEE Photonics Technol. Lett. vol. 10, pp. 1745-1747, 1998.
8 G. Bellotti, A. Bertaina, and S. Bigo, "Dependence of self-phase modulation impairments on residual dispersion in 10-Gb/s-based terrestrial transmissions using standard fiber,"" IEEE Photonics Technol. Lett. vol. 11, pp. 824-826, 1999.
9 이성렬, "집중형 분산 제어 WDM 전송 시스템에서 Mid-span spectral inversion 기술", 한국통신학회논문지, 제 33권 1호, pp. 7-15, 2008.
10 이성렬, "Inline 분산 제어 광전송 링크에서 전체 잉여 분산", 한국항행학회논문지, 제 12권 4호, pp. 311-316, 2008.
11 이성렬, 임황빈, "분산 제어가 적용된 광전송 링크에서 광 위상 공액의 비대칭성", 한국통신학회논문지, 제 35권 8호, pp. 801-809, 2010.
12 S. Wen, "Bi-end dispersion compensation for ultralong optical communication system," J. Lightwave Technol. vol. 17, pp. 792-798, 1999.   DOI   ScienceOn
13 G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2001.
14 S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, "Long-haul DWDM transmission systems employing optical phase conjugation", IEEE J. of Selected Topics in Quantum Electro., vol. 12, no. 4, pp. 505-520, 2006.
15 R. J. Nuyts, L. D. Tzeng, O. Mizuhara, and P. Gallion, "Effects of transmitter speed and receiver bandwidth on the eye margin performance of a 10-Gb/s optical fiber transmission system", IEEE Photon. Technol. Lett., vol. 9, pp. 532-535, 1997.
16 H. Kim and A. H. Gnauck, "Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise," IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 320-322, 2003.