Browse > Article
http://dx.doi.org/10.9713/kcer.2021.59.2.180

A Study on the Calculation of Minimum Safety Distance during Storage and Combustion Test of Solid Propellants for Launch Vehicles  

Shin, Ahn-Tae (Department of NARO Space Center, Korea Aerospace Research Institute)
Park, Byung-Mun (Department of NARO Space Center, Korea Aerospace Research Institute)
Byun, Hun-Soo (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Publication Information
Korean Chemical Engineering Research / v.59, no.2, 2021 , pp. 180-185 More about this Journal
Abstract
In accordance with the revision of the US-Korea missile guidelines, restrictions on the use of solid propellants for space launch vehicles have been completely lifted. The solid propellant can be used as a solid propellant rocket like the KSR-1 (Korea Sounding Rocket-1), and can also be used as a thrust augmentation booster for liquid fuel launch vehicles. It is known that solid propellants have a lower risk of explosion than liquid propellants. but if an accident such as an explosion at the Alcantara Launch Center in Brazil occurs, it can lead to a large-scale personal accident. In order to prevent such large-scale accidents, it is necessary to review and reflect the minimum safety distance during use, storage and combustion test of solid propellants from the planning phase of the project. In this paper, the minimum safety distance for safe use of the solid propellant is presented by dividing it into storage facilities and combustion tests.
Keywords
Solid-Propellant motor; Safety distance; Consequence analysis; TNT equivalent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Johnson, C. W. and Almeida, I. M., "An Investigation into the Loss of the Brazilian Space Programme's Launch Vehicle VLS-1 V03," Safety Science., 46, 38-53(2008).   DOI
2 Shin, A. T. and Byun, H. S., "Consequence Analysis and Risk Reduction Methods for Propulsion Test Facility," Korean Chem. Eng. Res., 54(3), 360-366(2016).   DOI
3 Yim, Y. J., Rho, M. K. and Lee, S. M., "A Study on the Burning Rate of Composite Solid Propellant," Journal of the Korean Institute of Chemical Engineers., 22(2), 83-90(1983).
4 Jung, Y. J. and Lee, C. J., "A Study on Predictive Models Based on the Machine Learning for Evaluating the Extent of Hazardous Zone of Explosive Gases," Korean Chem. Eng. Res., 58(2), 248-256(2020).
5 https://www.sciencelearn.org.nz/resources/393-types-of-chemical-rocket-engines., University of Waikato(2011).
6 The Boeing Company Space and Communications Group., "Delta II Payload Planners Guide," MDC H3224D(1996).
7 U.S. Department of Defense, "DoD Ammunition and Explosives Safety Standards," DoD 6055.9-STD, Washington, D.C(2004).
8 Baker, W. E., "Explosions in Air," University of Texas Press, Austin(1973).
9 Kinney, G. F. and Graham, K. J., "Explosive Shocks in Air," Springer-Verlag New York Inc, New York(1985).
10 Clancey, V. J., "Diagnostic Features of Explosion Damage," 6th International Meeting on Forensic Sciences, Edinburgh, Scotland (1972).
11 NASDA, "H-II 3 Ground Safety Plan," Safety 3-6-1(1994).
12 Naval Surface Weapons Center, "Maximum TNT Equivalence of Naval Propellants," ADP004886, Maryland(1984).
13 Sim, H. S., Choi, K. S., Shin, A. T. and Ko, J. H., "Criteria for Calculating the Explosion Risk of Space Launch Vehicles," KARI (2008).
14 KNPA, "Enforcement Decree of the Control of Firearms, Swords, Explosives, etc. act," Presidential Decree No. 31380(2021).
15 Kim, S. H. and Han, Y. M., "A Case Study of the Allocation of the Propulsion Test Facilities Abroad in Consideration for Explosion Blast Overpressure," 2011 Fall Conference of The Korean Society For Aeronautical and Space Sciences, 11, 438-442(2011).
16 U.S. Federal Aviation Administration, "Flight Safety Analysis Methodologies and Products for a Launch Vehicle Flown with a Flight Safety System," 14 CFR Parts 417, Appendix a to Part 417, Washington, D.C(2016).
17 Sim. H. S., Choi. K. S., Ko. J. H. and Roh. W. R., "Analysis on the Hazardous Radius for Blast Overpressure and Fireball from Launch Vehicle Explosion at Launch Pad," 2012 Spring Conference of The Korean Society of Aeronautics and Space Sciences, 12, 274-279(2012).
18 U.S. Federal Aviation Administration, "14 CFR Parts 401, 417 and 420 Licensing and Safety Requirements for Operation of a Launch Site; Rul," Part II Department of Transportation, Washington, D.C(2000).