Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.2.172

Variation of Performance with Operation Condition of Benthic Microbial Fuel Cells  

Oh, So-Hyeong (Department of Chemical Engineering, Sunchon National University)
Kwag, Ha-Won (Department of Chemical Engineering, Sunchon National University)
Lee, Ye-Jin (Department of Chemical Engineering, Sunchon National University)
Kim, Young-Sook (ETIS Co)
Chu, Cheun-Ho (ETIS Co)
Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
Publication Information
Korean Chemical Engineering Research / v.57, no.2, 2019 , pp. 172-176 More about this Journal
Abstract
A benthic microbial fuel cells(BMFC) is fuel cell using electricity produced by decomposing organic matter in a sea or a lake. In this study, we used a gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEMFC) as a BMFC electrode to find out the operation conditions with high performance. The performance of BMFC was increased as resistance of external resistor increased. It was possible to maintain the performance by avoiding the increase of the contact resistance with the electrode due to corrosion of the lead wire in seawater. The bubble generator was able to increase the maximum power density by more than 2 times and the optimum operating temperature was $40^{\circ}C$.
Keywords
BMFC; Performance; Operation condition; GDL; Electrode;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rezaei, F., Richard, T. L., Brennan, R. A. and Logan, B. E., "Substrate-enhanced Microbial Fuel Cells for Improved Remote Power Generation from Sediment-based Systems," Environ. Sci. Technol., 41(11), 4053-4058(2007).   DOI
2 Cheng, S., Liu, H. and Logan, B. E., "Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells," Environ. Sci. Technol., 40(1), 364-369(2006).   DOI
3 Karra, U., Huang, G., Umaz, R., Tenaglier, C., Wang, L. and Li, B., "Stability Characterization and Modeling of Robust Distributed Benthic Microbial Fuel Cell (DBMFC) System," Bioresour. Technol., 144, 477-484(2013).   DOI
4 Cristiani, P., Carvalho, M. L., Guerrini, E., Daghio, M., Santoro, C. and Li, B., "Cathodic and Anodic Biofilms in Single Chamber Microbial Fuel Cells," Biogeochemistry, 92, 6-13(2013).
5 Fadzillah, D. M., Rosli, M. I., Talib, M. Z. M., Kamarudin, S. K. and Daud, W. R. W., "Review on Microstructure Modelling of a Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells," Renew. Sustain. Energy Rev., 77, 1001-1009(2017).   DOI
6 Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013).   DOI
7 Karra, U., Muto, E., Umaz, R., Kolln, M., Santoro, C., Wang, L. and Li, B., "Performance Evaluation of Activated Carbon-based Electrodes with Novel Power Management System for Long-term Benthic Microbial Fuel Cells," Int. J. Hydrogen Energy, 39(36), 21847-21856(2014).   DOI
8 Li, H., He, W., Qu, Y., Li, C., Tian, Y. and Feng, Y., "Pilot-scale Benthic Microbial Electrochemical System (BMES) for the Bioremediation of Polluted River Sediment," J. Power Sources, 356(15), 430-437(2017).   DOI
9 Mahendiravarman, E. and Sangeetha, D., "Increased Microbial Fuel Cell Performance Using Quaternized Poly Ether Ether Ketone Anionic Membrane Electrolyte for Electricity Generation," J. Power Sources, 38(5), 2471-2479(2013).
10 Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011).   DOI
11 Martins, G., Peixoto, L., Ribeiro,D. C.. Parpot, P., Brito, A. G. and Nogueira, R., "Towards Implementation of a Benthic Microbial Fuel Cell in Lake Furnas (Azores):Phylogenetic Affiliation and Electrochemical Activity of Sediment Bacteria," Bioelectrochemistry, 78, 67-71(2010).   DOI
12 Pandey, B. and Fulekar, M. H., "Bioremediation Technology: A New Horizon for Environmental Clean-up," Biol. Med., 4(1), 51-59(2012).
13 Grey, D., Garrick, D., Blackmore, D., Kelman, J., Muller, M. and Sadoff, C., "Water Security in one Blue Planet: Twenty-first Century Policy Challenges for Science," Philos. Transact. A Math. Phys. Eng. Sci., 371, 1-10(2013).
14 Hashim, M. A., Mukhopadhyay S., Sahu J. N. and Sengupta B., "Remediation Technologies for Heavy Metal Contaminated Groundwater," J. Environ. Manag., 92(10), 2355-2388(2011).   DOI
15 Yeung, A. T., "Milestone Developments, Myths, and Future Directions of Electrokinetic Remediation," Sep. Purif. Technol., 79(2), 124-132(2011).   DOI
16 Nester, E. W., Anderson, D. G., Roberts, C. E., Pearsall, N. N. and Nester, M. T., "Microbiology: A Human Perspective," 7th Edn., McGraw-Hill, New York(2011).
17 Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H. and Lovley, D. R., "Harvesting Energy from the Marine Sediment-water Interface II: Kinetic Activity of Anode Materials," Biosens. Bioelectron., 21(11), 2058-2063(2006).   DOI
18 Reimers, C. E., Tender, L. M., Fertig, S. and Wang, W., "Harvesting Energy from the Marine Sediment-water Interface," Environ. Sci. Technol., 35(1), 192-195(2001).   DOI
19 Dumas, C., Mollica, A., Feron, D., Basseguy, R., Etcheverry, L. and Bergel, A., "Marine Microbial Fuel Cell: Use of Stainless Steel Electrodes as Anode and Cathode Materials," Electrochim. Acta, 53(2), 468-473(2007).   DOI