Browse > Article
http://dx.doi.org/10.9713/kcer.2016.54.3.380

Paper-Based Neuraminidase Assay Sensor for Detection of Influenza Viruses  

Hwang, Cheol-hwan (Department of Chemical Engineering, Soongsil University)
Jeong, Seong-Geun (Department of Chemical Engineering, Chungnam National University)
Park, Han-Kyu (Department of Chemical Engineering, Soongsil University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
Publication Information
Korean Chemical Engineering Research / v.54, no.3, 2016 , pp. 380-386 More about this Journal
Abstract
In this study, we described a paper-based neuraminidase assay sensor (PNAS) which can be applied to detect the infection by influenza viruses. The PNAS was designed and manufactured to quantitatively identify the levels of neuraminidase in the sample, which is based on colorimetric analysis using the X-Neu5Ac substrate. The limit of detection of the PNAS was determined as 0.004 U/mL of neuraminidase. According to the amount of neuraminidase in human serum, the PNAS could monitor the enzyme activity with a good linearity ($R^2$ > 0.99). In addition, the initial performance of the PNAS has been maintained up to 70 days in the $4^{\circ}C$. Finally, we demonstrated whether the Michaelis-Menten kinetics is applied to the PNAS, which can show the reliability of the enzyme reactions. The kinetic studies indicated that the PNAS provides the good condition for enzyme reactions ($K_m=8.327{\times}10^{-3}M$), but they were performed on paper chip nonetheless. The paper-based neuraminidase assay sensor may be useful in a wide range of rapid and safe detection of influenza virus.
Keywords
Influenza virus; Neuraminidase; Paper chip; Enzyme kinetics; X-Neu5Ac; Colorimetric assay;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Carrilho, E., Martinez, A. W. and Whitesides, G. M., "Understanding Wax Printing: a Simple Micropatterning Process for Paperbased Microfluidics," Anal. Chem., 81(16), 7091-7095(2009).   DOI
2 Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M. and Whitesides, G. M., "FLASH: a Rapid Method for Prototyping Paperbased Microfluidic Devices," Lab Chip, 8(12), 2146-2150(2008).   DOI
3 Fujii, I., Iwabuchi, Y., Teshima, T., Shiba, T. and Kikuchi, M., "X-Neu5Ac: A Novel Substrate for Chromogenic Assay of Neuraminidase Activity in Bacterial Expression Systems," Biorg. Med. Chem., 1(2), 147-149(1993).   DOI
4 Vella, S. J., Beattie, P., Cademartiri, R., Laromaine, A., Martinez, A. W., Phillips, S. T., Mirica, K. A. and Whitesides, G. M., "Measuring Markers of Liver Function Using a Micropatterned Paper Device Designed for Blood from a Fingerstick," Anal. Chem., 84(6), 2883-2891(2012).   DOI
5 Cheng, C. M., Martinez, A. W., Gong, J., Mace, C. R., Phillips, S. T., Carrilho, E., Mirica, K. A. and Whitesides, G. M., "Paper-Based ELISA," Angew. Chem. Int. Ed., 49(28), 4771-4774(2010).   DOI
6 Saito, M., Hagita, H., Iwabuchi, Y., Fujii, I., Ikeda, K. and Ito, M., "Fluorescent Cytochemical Detection of Sialidase Activity Using 5-bromo-4-chloroindol-3-yl-${\alpha}$-dN-acetylneuraminic Acid as the Substrate," Histochem. Cell Biol., 117(5), 453-458(2002).   DOI
7 Minami, A., Otsubo, T., Ieno, D., Ikeda, K., Kanazawa, H., Shimizu, K., Ohata, K., Yokochi, T., Horii, Y. and Fukumoto, H., "Visualization of Sialidase Activity in Mammalian Tissues and Cancer Detection with a Novel Fluorescent Sialidase Substrate," PLoS One, 9(1), e81941(2014).   DOI
8 Michaelis, L. and Menten, M. L., "Die Kinetik Der Invertinwirkung," Biochem. z, 49(333-369), 352(1913).
9 Fanjul-Bolado, P., Gonzalez-Garcia, M. B. and Costa-Garcia, A., "Quantitative Analysis of Enzymatic Assays Using Indoxyl-based Substrates," Anal. Bioanal. Chem., 386(6), 1849-1854(2006).   DOI
10 Harper, S. A., Fukuda, K., Uyeki, T. M., Cox, N. J. and Bridges, C. B., "Prevention and Control of Influenza," MMWR Prev Control, 53, 1-40(2004).
11 Katagiri, S., Ohizumi, A. and Homma, M., "An Outbreak of Type C Influenza in a Children's Home," J. Infect. Dis., 148(1), 51-56 (1983).   DOI
12 Matsuzaki, Y., Katsushima, N., Nagai, Y., Shoji, M., Itagaki, T., Sakamoto, M., Kitaoka, S., Mizuta, K. and Nishimura, H., "Clinical Features of Influenza C Virus Infection in Children," J. Infect. Dis., 193(9), 1229-1235(2006).   DOI
13 De Jong, J., Rimmelzwaan, G.; Fouchier, R. and Osterhaus, A., "Influenza Virus: a Master of Metamorphosis," J. Infect., 40(3), 218-228(2000).   DOI
14 Das, K., Aramini, J. M., Ma, L.-C., Krug, R. M. and Arnold, E., "Structures of Influenza A Proteins and Insights Into Antiviral Drug Targets," Nat. Struct. Mol. Biol., 17(5), 530-538(2010).   DOI
15 Moscona, A., "Neuraminidase Inhibitors for Influenza," N. Engl. J. Med., 353(13), 1363-1373(2005).   DOI
16 Wiley, D. C. and Skehel, J. J., "The Structure and Function of the Hemagglutinin Membrane Glycoprotein of Influenza Virus," Annu. Rev. Biochem., 56(1), 365-394(1987).   DOI
17 Horimoto, T. and Kawaoka, Y., "Influenza: Lessons from Past Pandemics, Warnings from Current Incidents," Nat Rev Micro, 3(8), 591-600(2005).   DOI
18 Amano, Y. and Cheng, Q., "Detection of Influenza Virus: Traditional Approaches and Development of Biosensors," Anal. Bioanal. Chem., 381(1), 156-164(2005).   DOI
19 Benton, D. J., Martin, S. R., Wharton, S. A. and McCauley, J. W., "Biophysical Measurement of the Balance of Influenza A Hemagglutinin and Neuraminidase Activities," J. Biol. Chem., 290(10), 6516-6521(2015).   DOI
20 Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. and Klenk, H.-D., "Neuraminidase is Important for the Initiation of Influenza Virus Infection in Human Airway Epithelium," J. Virol., 78(22), 12665-12667(2004).   DOI
21 Spackman, E., Senne, D. A., Myers, T., Bulaga, L. L., Garber, L. P., Perdue, M. L., Lohman, K., Daum, L. T. and Suarez, D. L., "Development of a Real-time Reverse Transcriptase PCR Assay for Type A Influenza Virus and the Avian H5 and H7 Hemagglutinin Subtypes," J. Clin. Microbiol., 40(9), 3256-3260(2002).   DOI
22 Voller, A., Bartlett, A., Bidwell, D., Clark, M. and Adams, A., "The Detection of Viruses by Enzyme-linked Immunosorbent Assay (ELISA)," J. Gen. Virol., 33(1), 165-167(1976).   DOI
23 Schafer, W., Pister, L., Hunsmann, G. and Moennig, V., "Comparative Serological Studies on Type C Viruses of Various Mammals," Nature, 245(142), 75-77(1973).   DOI
24 Bassin, R. H., Tuttle, N. and Fischinger, P. J., "Rapid Cell Culture Assay Technique for Murine Leukaemia Viruses," Nature, 229, 564-566(1971).
25 Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R. and Weigl, B. H., "Microfluidic Diagnostic Technologies for Global Public Health," Nature, 442(7101), 412-418(2006).   DOI
26 Yager, P., Domingo, G. J. and Gerdes, J., "Point-of-Care Diagnostics for Global Health," Annu. Rev. Biomed. Eng., 10(1), 107-144(2008).   DOI
27 Plecis, A. and Chen, Y., "Fabrication of Microfluidic Devices Based on Glass-PDMS-glass Technology," Microelectron. Eng., 84(5), 1265-1269(2007).   DOI
28 Gervais, L., de Rooij, N. and Delamarche, E., "Microfluidic Chips for Point-of-Care Immunodiagnostics," Adv. Mater., 23(24), H151-H176(2011).   DOI
29 Boehm, D. A., Gottlieb, P. A. and Hua, S. Z., "On-chip Microfluidic Biosensor for Bacterial Detection and Identification," Sens. Actuators, B, 126(2), 508-514(2007).   DOI
30 Fujii, T., "PDMS-based Microfluidic Devices for Biomedical Applications," Microelectron. Eng., 61, 907-914(2002).
31 Huh, Y. S., Choi, B. G. and Hong, W. H., "Fabrication of Nano-filter Device for High Efficient Separation and Concentration of Biomolecules," Korean Chem. Eng. Res., 50(4), 738-742(2012).   DOI
32 Huh, Y. S., Jeon, S. J., Lee, E. Z., Park, H. S. and Hong, W. H., "Microfluidic Extraction Using Two Phase Laminar Flow for Chemical and Biological Applications," Korean J. Chem. Eng., 28(3), 633-642(2011).   DOI
33 Parolo, C. and Merkoci, A., "Paper-based Nanobiosensors for Diagnostics," Chem. Soc. Rev., 42(2), 450-457(2013).   DOI
34 Gomez, F. A., "Paper Microfluidics in Bioanalysis," Bioanalysis, 6(21), 2911-2914(2014).   DOI
35 Martinez, A. W., Phillips, S. T., Whitesides, G. M. and Carrilho, E., "Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices," Anal. Chem., 82(1), 3-10(2010).   DOI
36 Jokerst, J. C., Adkins, J. A., Bisha, B., Mentele, M. M., Goodridge, L. D. and Henry, C. S., "Development of a Paper-based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens," Anal. Chem., 84(6), 2900-2907(2012).   DOI