Browse > Article
http://dx.doi.org/10.9713/kcer.2014.52.1.26

Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices  

Kim, Myung Jun (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University)
Kim, Jae Jeong (School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University)
Publication Information
Korean Chemical Engineering Research / v.52, no.1, 2014 , pp. 26-39 More about this Journal
Abstract
Cu interconnection in electronic devices is fabricated via damascene process including Cu electrodeposition. In this review, Cu electrodeposition and superfilling for fabricating Cu interconnection are introduced. Superfilling results from the influences of organic additives in the electrolyte for Cu electrodeposition, and this is enabled by the local enhancement of Cu electrodeposition at the bottom of filling feature formed on the wafer through manipulating the surface coverage of organic additives. The dimension of metal interconnection has been constantly reduced to increase the integrity of electronic devices, and the width of interconnection reaches the range of few tens of nanometer. This size reduction raises the issues, which are the deterioration of electrical property and the reliability of Cu interconnection, and the difficulty of Cu superfilling. The various researches on the development of organic additives for the modification of Cu microstructure, the application of pulse and pulse-reverse electrodeposition, Cu-based alloy superfilling for improvement of reliability, and the enhancement of superfilling phenomenon to overcome the current problems are addressed in this review.
Keywords
Metal Interconnection; Damascene Process; Electrodeposition; Copper; Superfilling;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Bohr, M. T., "Interconnect Scaling - the Real Limiter to High Performance ULSI," Proc. IEEE IEDM Tech. Dig., 241-244(1995).
2 Interconnect, ITRS (International Technology Roadmap for Semiconductors, on-line document), 2011 edition, International Technology for Semiconductors(2011).
3 Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J. and Deligianni, H., "Damascene Copper Electroplating for Chip Interconnections," IBM J. Res. Dev., 42, 567-574(1998).   DOI   ScienceOn
4 Vereecken, P. M., Binstead, R. A., Deligianni, H., and Andricacos, P. C., "The Chemistry of Additives in Damascene Copper Plating," IBM J. Res. Dev., 49, 3-18(2005).   DOI   ScienceOn
5 Kwon, O. J., Cho, S. K. and Kim, J. J., "Electrochemical Metallization Processes for Copper and Silver Metal Interconnection," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 47, 141-149(2009).   과학기술학회마을
6 Kim, M. J., "The Influences of Pulse and Pulse-reverse Electrodeposition on the Properties of Cu Thin Films and Superfilling for the Fabrication of Cu Interconnection," Ph.D. Dissertation, Seoul National University, Seoul(2013).
7 Namkoung, Y. M., Lee, H.-M., Son, Y.-S., Lee, K. and Kim, C.-K., "Characteristics of Electrodeposited CoWP Capping Layers Using Alkali-metal-free Precursors," Korean J. Chem. Eng., 27, 1596-1600(2010).   DOI
8 Lee, H.-M., Chae, H. and Kim, C.-K., "Electroless Deposition of NiMoP Films Using Alkali-free Chemicals for Capping Layers of Copper Interconnections," Korean J. Chem. Eng., 29, 1259-1265 (2012).   과학기술학회마을   DOI
9 West, A. C., Mayer, S. and Reid, J., "A Superfilling Model that Predicts Bump Formation," Electrochem. Solid State Lett., 4, C50-C53(2001).   DOI   ScienceOn
10 Kim, S.-K. and Kim, J. J., "Superfilling Evolution in Cu Electrodeposition; Dependence on the Aging Time of the Accelerator," Electrochem. Solid State Lett., 7, C98-C100(2004).   DOI   ScienceOn
11 Kim, S.-K. Cho, S. K., Kim, J. J. and Lee, Y.-S., "Superconformal Cu Electrodeposition on Various Substrates," Electrochem. Solid State Lett., 8, C19-C21(2005).   DOI
12 Lu, J., Dreisinger, D. B. and Cooper, W. C., "Thermodynamics of the Aqueous Copper-cyanide System," Hydrometallurgy, 66, 23-36(2002).   DOI   ScienceOn
13 Healy, J. P., Pletcher, D. and Goodenough, M., "The Chemistry of the Additives in An Acid Copper Electroplating Bath: Part II. The Instability 4,5 Dithiaoctane-1,8-disulphonic Acid in the Bath on Open Circuit," J. Electronal. Chem., 338, 167-177(1992).   DOI
14 Jin, Y., Sui, Y., Wen, L., Ye, F., Sun, M. and Wang, Q., "Competitive Adsorption of PEG and SPS on Copper Surface in Acidic Electrolyte Containing $Cl^-$," J. Electrochem. Soc., 160, D20-D27 (2013).
15 Kang, M. and Gewirth, A. A., "Influence of Additives on Copper Electrodeposition on Physical Vapor Deposited (PVD) Copper Substrate," J. Electrochem. Soc., 150, C426-C434(2003).   DOI   ScienceOn
16 Frank, A. and Bard, A. J., "The Decomppsition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries," J. Electrochem. Soc., 150, C244-C250(2003).   DOI   ScienceOn
17 Huynh, T. M. T., Hai, N. T. M. and Broekmann, P., "Quasi-reversible Interaction of MPS and Chloride on Cu(100) Studied by in situ STM," J. Electrochem. Soc., 160, D3063-D3069(2013).   DOI
18 Bozzini, B., D'Urzo, L., Romanello, V. and Mele, C., "Electrodeposition of Cu Film Acidic Sulfate Solutions in the Presence of bis-(3-sulfopropyl)-disulfide (SPS) and Chloride Ions," J. Electrochem. Soc., 153, C254-C257(2006).   DOI
19 Tan, M., Guymon, C., Wheeler, D. R. and Harb, J. N., "The Role of SPS, MPSA, and chloride in additive systems for copper electrodeposition", J. Electrochem. Soc., 154, D78-D81 (2007).   DOI
20 Taubert, C. E., Kolb, D. M., Memmert, U. and Meyer, H., "Adsorption of the Additives MPA, MPSA, and SPS onto Cu(111) from Sulfuric Acid Solutions," J. Electrochem. Soc., 154, D293-D299 (2007).   DOI
21 Liske, R., Wehner, S., Preusse, A., Kuecher, P. and Bartha, J. W., "Influence of Additive Coadsorption on Copper Superfill Behavior," J. Electrochem. Soc., 156, H955-H960(2009).   DOI
22 Dow, W.-P., Yen, M.-Y., Lin, W.-B. and Ho, S.-W., "Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating," J. Electrochem. Soc., 152, C769-C775 (2005).   DOI   ScienceOn
23 Cho, S. K., Kim, M. J., Koo, H.-C., Kim, S.-K. and Kim, J. J., "An Empirical Relation Between the Plating Process and Accelerator Coverage in Cu Superfilling," Bull. Korean Chem. Soc., 33, 1603-1607(2012).   과학기술학회마을   DOI
24 Wang, W. and Li, Y.-B., "Effect of Cl- on the Adsorption-desorption Behavior of PEG," J. Electrochem. Soc., 155, D263-D269 (2008).   DOI
25 Garrido, M. E. H. and Pritzker, M. D., "Inhibition of Copper Deposition by Polyethylene Glycol and Chloride II. Analysis and Application," J. Electrochem. Soc., 156, D175-D183(2009).   DOI
26 Cho, S. K., "Superfilling and Leveling in Damascene Cu Electrodeposition for High Performance Semiconductor Devices," Ph.D. Dissertation, Seoul National University, Seoul(2013).
27 Josell, D., Wheeler, D., Huber, W. H., Bonevich, J. E. and Moffat, T. P., "A Simple Equation for Predicting Superconformal Electrodeposition in Submicrometer Trenches," J. Electrochem. Soc., 148, C767-C773(2001).   DOI   ScienceOn
28 Moffat, T. P., Wheeler, D., Kim, S.-K. and Josell, D., "Curvature Enhanced Adsorbate Coverage Model for Electrodeposition," J. Electrochem. Soc., 153, C127-C132(2006).   DOI
29 Josell, D., Moffat, T. P. and Wheeler, D., "Superfilling When Adsorbed Accelerators are Mobile," J. Electrochem. Soc., 154, D208-D214(2007).   DOI
30 Moffat, T. P., Wheeler, D. and Josell, D., "Electrodeposition of Copper in the SPS-PEG-Cl Additive System I. Kinetic Measurements: Influence of SPS," J. Electrochem. Soc., 151, C262-C271 (2004).   DOI
31 Willey, M. J. and West, A. C., "SPS Adsorption and Desorption During Copper Electrodeposition and Its Impact on PEG Adsorption," J. Electrochem. Soc., 154, D156-D162(2007).
32 Baker, B. C., Freeman, M., Melnick, B., Wheeler, D., Josell, D. and Moffat, T. P., "Superconformal Electrodeposition of Silver from a KAg(CN)2-KCN-KSeCN Electrolyte," J. Electrochem. Soc., 150, C61-C66(2003).   DOI   ScienceOn
33 Ahn, E. J. and Kim, J. J., "Additives for Superconformal Electroplating of Ag Thin Film for ULSIs," Electrochem. Solid State Lett., 7, C118-C120(2004).   DOI   ScienceOn
34 Josell, D., Burkhard, C., Li, Y., Cheng, Y.-W., Keller, R. R., Witt, C. A., Kelley, D. R., Bonevich, J. E., Baker, B. C. and Moffat, T. P., "Electrical Properties of Superfilled Sub-micrometer Silver Metallizations," J. Appl. Phys., 96, 759-768(2004).   DOI   ScienceOn
35 Josell, D., Beauchamp, C. R., Kelley, D. R., Witt, C. A. and Moffat, T. P., "Gold Superfill in Sub-micrometer Trenches," Electrochem. Solid State Lett., 8, C54-C57(2005).   DOI
36 Hu, Z. and Ritzdorf, T., "Superconformal Electrochemical Deposition of Gold for Metallization in Microelectronic Devices," J. Electrochem. Soc., 153, C467-C471(2006).   DOI
37 Josell, D. and Moffat, T. P., "Superfilling Damascene Trenches with Gold in a Sulfite Electrolyte," J. Electrochem. Soc., 160, D3009-D3014(2013).   DOI
38 Kim, S.-K., Bonevich, J. E., Josell, D. and Moffat, T. P., "Electrodeposition of Ni in Submicrometer Trenches," J. Electrochem. Soc., 154, D443-D451(2007).   DOI
39 Ohring, M., The Materials Science of Thin Films, 1st ed., Academic Press, Inc., San Diego(1992).
40 Interconnect, ITRS (International Technology Roadmap for Semiconductors, on-line document), 2007 edition, International Technology for Semiconductors(2007).
41 Plombon, J. J., Andideh, E., Dubin, V. M. and Maiz, J., "Influence of Phonon, Geometry, Impurity, and Grain Size on Copper Line Resistivity," Appl. Phys. Lett., 89, 113124-1-113124-3(2006).   DOI
42 Henriquez, R., Cancino, S., Espinosa, A., Flores, M., Hoffmann, T., Kremer, G., Lisoni, J. G., Moraga, L., Morales, R., Oyarzun, S., Suarez, M. A., Zuniga, A. and Munoz, R. C., "Electron Grain Boundary Scattering and the Resistivity of Nanometric Metallic Structures," Phys. Rev. B, 82, 113409-1-113409-4(2010).   DOI
43 Josell, D., Brongersma, S. H. and Tokei, Z., "Size-dependent Resistivity in Nanoscale Interconnects," Annu. Rev. Mater. Res., 39, 231-254(2009).   DOI
44 Mayadas, A. F. and Shatzkes, M., "Electrical-resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces," Phys. Rev. B, 1, 1382-1389(1970).   DOI
45 Rosenberg, R., Mayadas, A. F. and Gupta, D., "Grain Boundary Contributions to Transport," Surf. Sci., 31, 566-585(1972).   DOI
46 Rossnagel, S. M. and Kuan, T. S., "Alteration of Cu Conductivity in the Size Effect Regime," J. Vac. Sci. Technol. B, 22, 240-247 (2004).   DOI
47 Paunovic, M. and Schlesinger, M., Fundamentals of Electrochemical Deposition, 2nd ed., John Wiley & Sons, Inc., New Jersey (2006).
48 Manu, R. and Jayakrishnan, S., "Influence of Polymer Additive Molecular Weight on Surface and Microstructural Characteristics of Electrodeposited Copper," Bull. Mater. Sci., 34, 347-356(2011).   DOI
49 Cho, S. K., Kim, S.-K. and Kim, J. J., "Superconformal Cu Electrodeposition Using DPS; A Substitutive Accelerator for SPS," J. Electrochem. Soc., 152, C330-C333(2005).   DOI   ScienceOn
50 Cho, S. K., Kim, M. J., Koo, H.-C., Kwon, O. J. and Kim, J. J., "Low-resistivity Cu Film Electrodeposited with 3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonate for the Application to the Interconnection of Electronic Devices," Thin Solid Films, 520, 2136-2141(2012).   DOI
51 Kim, M. J., Cho, S. K., Koo, H.-C., Lim, T., Park, K. J. and Kim, J. J., "Pulse Electrodeposition for Improving Electrical Properties of Cu Thin Film," J. Electrochem. Soc., 157, D564-D569(2010).   DOI
52 Kim, M. J., Lim, T., Park, K. J., Cho, S. K., Kim, S.-K. and Kim, J. J., "Characteristics of Pulse-reverse Electrodeposited Cu Thin Films: I. Effects of the Anodic Step in the Absence of An Organic Additive," J. Electrochem. Soc., 159, D538-D543(2012).   DOI
53 Kim, M. J., Lim, T., Park, K. J., Kwon, O. J., Kim, S.-K. and Kim, J. J., "Characteristics of Pulse-reverse Electrodeposited Cu Thin Film: II. Effects of Organic Additives," J. Electrochem. Soc., 159, D544-D548(2012).   DOI
54 Lloyd, J. R. and Clement, J. J., "Electromigration in Copper Conductors," Thin Solid Films, 262, 135-141(1995).   DOI
55 Arnaud, L., Gonnella, R., Tartavel, G., Torres, J., Gounelle, C., Gobil, Y. and Morand, Y., "Electromigration Failure Modes in Damascene Copper Interconnects," Microelectron. Reliab., 38, 1029-1034(1998).   DOI
56 Barmak, K., Gungor, A., Rollett, A. D., Cabral Jr., C. and Harper, J. M. E., "Texture and Resistivity of Cu and Dilute Cu Alloy Films," Mat. Res. Soc. Symp. Proc., 721, 51-60(2002).
57 Hu, C.-K. and Harper, J. M. E., "Copper Interconnection and Reliability," Mater. Chem. and Phys., 52, 5-16(1998).   DOI
58 Arnaud, L., Tartavel, G., Berger, T., Mariolle, D., Gobli, Y. and Touet, I., "Microstructure and Electromigration in Copper Damascene Lines," Microelectron. Reliab., 40, 77-86(2000).   DOI   ScienceOn
59 Tan, C. M. and Roy, A., "Electromigration in ULSI Interconnects," Mater. Sci. Eng. R, 58, 1-75(2007).   DOI
60 Lee, W., Cho, H., Cho, B., Kim, J., Kim, Y.-S., Jung, W.-G., Kwon, H., Lee, J., Reucroft, P. J., Lee, C. and Lee, J., "Factors Affecting Passivation of Cu(Mg) Alloy Films," J. Electrochem. Soc., 147, 3066-3069(2000).   DOI   ScienceOn
61 Zhao, B., Kim, H. and Shimogaki, Y., "Effects of Ag Addition on the Resistivity, Texture and Surface Morphology of Cu Metallization," Jpn. J. Appl. Phys., 41, L1278-L1281(2005).
62 Zhao, B., Momose, T. and Shimogaki, Y., "Deposition of Cu-Ag Alloy Film by Supercritical Fluid Deposition," Jpn. J. Appl. Phys., 45, L1296-L1299(2006).   DOI
63 Barmak, K., Cabral Jr., C., Rodbell, K. P. and Harper, J. M. E., "On the Use of Alloying Elements for Cu Interconnect Applications," J. Vac. Sci. Technol. B, 24, 2485-2498(2006).   DOI
64 Kim, M. J., Lee, H. J., Yong, S. H., Kwon, O. J., Kim, S.-K. and Kim, J. J., "Facile Formation of Cu-Ag Film by Electrodeposition for the Oxidation-resistive Metal Interconnect," J. Electrochem. Soc., 159, D253-D259(2012).   DOI
65 Reid, J., "Copper Electrodeposition: Principles and Recent Progress," Jpn. J. Apply. Phys., 40, 2650-2657(2001).   DOI
66 Kim, M. J., Yong, S. H., Ko, H. S., Lim, T., Park, K. J., Kwon, O. J. and Kim, J. J., "Superfilling of Cu-Ag Using Electrodeposition in Cyanide-based Electrolyte," J. Electrochem. Soc., 159, D656-D658(2012).   DOI
67 Kim, M. J., Park, K. J., Lim, T., Kwon, O. J. and Kim, J. J., "Fabrication of Cu-Ag Interconnection Using Electrodeposition: The Mechanism of Superfilling and the Properties of Cu-Ag Film," J. Electrochem. Soc., 160, D3126-D3133(2013).   DOI
68 Volov, I., Swanson, E., O'Brien, B., Novak, S. W., Boom, R. V. D., Dunn, K. and West, A. C., "Pulse-plating of Copper-silver Alloys for Interconnect Applications," J. Electrochem. Soc., 159, D677- D683(2012).   DOI
69 Gwllaway, J. W., Willey, M. J. and West, A. C., "Copper Filling of 100 nm Trenches Using PEG, PPG, and a Triblock Copolymer as Plating Suppressors," J. Electrochem. Soc., 156, D287-D295(2009).   DOI
70 Moffat, T. P., Wheeler, D., Huber, W. H. and Josell, D., "Superconformal Electrodeposition of Copper," Electrochem. Solid State Lett., 4, C26-C29(2001).   DOI   ScienceOn
71 Kim, M. J., Lim, T., Park, K. J., Kim, S.-K. and Kim, J. J., "Pulse-reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection I. Effects of Anodic Steps on the Competitive Adsorption of the Additives Used for Superfilling," J. Electrochem. Soc., 160, D3081(2013).   DOI
72 Kim, M. J., Lim, T., Park, K. J., Kim, S.-K. and Kim, J. J., "Pulsereverse Electrodeposition of Cu for the Fabrication of Metal Interconnection II. Enhancement of Cu Superfilling and Leveling," J. Electrochem. Soc., 160, D3088(2013).   DOI
73 Choe, S., Kim, M. J., Kim, H. C., Lim, T., Park, K. J., Cho, S. K., Kim, S.-K. and Kim, J. J., "Seed Repair by Electrodeposition in Pyrophosphate Solution for Acid Cu Superfilling," J. Electrochem. Soc., 160, D202-D205(2013).   DOI
74 Andryuschenko, T. and Reid, J., "Electroless and Electrolytic Seed Repair Effects on Damascene Feature Fill," Proc. Int. Interconnect Technol. Conf., 33-35(2001).
75 Sukamto, J. H., Webb, E., Andryuschenko, T. and Reid, J., "An Evaluation of Electrolytic Repair of Discontinuous PVD Copper Seed Layers in Damascene Vias," J. Appl. Electrochem., 34, 283-290(2004).   DOI
76 Cho, S. K., Lim, T., Lee, H.-K. and Kim, J. J., "A Study on Seed Damage in Plating Electrolyte and Its Repairing in Cu Damascene Metallization," J. Electrochem. Soc., 157, D187-D192(2010).   DOI
77 Shacham-Diamand, Y. and Dubin, V. M., "Copper Electroless Deposition Technology for Ultra-large-scale-integration (ULSI) Metallization," Microelectron. Eng., 33, 47-58(1997).   DOI
78 Lee, C. H., Hwang, S., Kim, S.-C. and Kim, J. J., "Cu Electroless Deposition Onto Ta Substrates," Electrochem. Solid State Lett., 9, C157-C160(2006).   DOI   ScienceOn
79 Josell, D., Wheeler, D., Witt, C. and Moffat, T. P., "Seedless Superfill: Copper Electrodeposition in Trenches with Ruthenium Barriers," Electrochem. Solid State Lett., 6, C143-C145(2003).   DOI   ScienceOn
80 Zheng, M., Willey, M. and West, A. C., "Electrochemical Nucleation of Copper on Ruthenium," Electrochem. Solid State Lett., 8, C151(2005).   DOI
81 Cheon, T., Choi, S.-H., Kim, S.-H. and Kang, D.-H., "Atomic Layer Deposition of RuAlO Thin Films as a Diffusion Barrier for Seedless Cu Interconnects," Electrochem. Solid State Lett., 14, D57-D61(2011).   DOI
82 Moffat, T. P., Walker, M., Chen, P. J., Bonevich, J. E., Egelhoff, W. F., Richter, L., Witt, C., Aaltonen, T., Ritala, M., Leskela, M. and Josell, D., "Electrodeposition of Cu on Ru Barrier Layers for Damascene Processing," J. Electrochem. Soc., 153, C37-C50(2006).   DOI   ScienceOn
83 Josell, D., Witt, C. and Moffat, T. P., "Osmium Barriers for Direct Copper Electrodeposition in Damascene Processing," Electrochem. Solid State Lett., 9, C41-C43(2006).   DOI   ScienceOn
84 Josell, D., Bonevich, J. E., Moffat, T. P., Aaltonen, T., Ritala, M. and Leskela, M., "Iridium Barriers for Direct Copper Electrodeposition in Damascene Processing," Electrochem. Solid State Lett., 9, C48-C50(2006).   DOI   ScienceOn
85 Hong, T. E., Cheon, T., Kim, S.-H., Kim, J.-K., Park, Y.-B., Kwon, O. J., Kim, M. J. and Kim, J. J., "Effects of $AlO_x$ Incorporation Into Atomic Layer Deposited Ru Thin Films: Applications to Cu Direct Plating Technology," J. Alloy. Compd., 580, 72-81(2013).   DOI
86 Kim, M. J., Kim, H. C., Kim, S.-H., Yeo, S., Kwon, O. J. and Kim, J. J., "Direct Electrodeposition of Cu on Ru-$Al_2O_3$ Layer," J. Electrochem. Soc., 160, D3057-D3062(2013).   DOI
87 Xu, W.-Z., Xu, J.-B., Lu, H.-S., Wang, J.-X., Hu, Z.-J. and Qu, X.-P., "Direct Copper Plating on Ultra-thin Sputtered Cobalt Film in An Alkaline Bath," J. Electrochem. Soc., 160, D3075-D3080 (2013).   DOI
88 Arunagiri, T. N., Zhang, Y., Chyan, O., El-Bouanani, M., Kim, M. J., Chen, K. H., Wu, C. T. and Chen, L. C., "5 nm Ruthenium Thin Film as a Directly Plateable Copper Diffusion Barrier," Appl. Phys. Lett., 86, 083104-1-083104-3(2005).
89 Lee, C. H., Bonevich, J. E., Bertocci, U., Steffens, K. L. and Moffat, T. P., "Superconformal Ni Electrodeposition Using 2-mercapto- Benzimidazole," J. Electrochem. Soc., 158, D366-D376(2011).   DOI