Browse > Article
http://dx.doi.org/10.9713/kcer.2013.51.1.10

State-of-arts in Multiscale Simulation for Process Development  

Lim, Young-Il (Lab. FACS, RCCT, Department of Chemical Engineering, Hankyong National University)
Publication Information
Korean Chemical Engineering Research / v.51, no.1, 2013 , pp. 10-24 More about this Journal
Abstract
The state-of-arts of multiscale simulation (MSS) in science and engineering is briefly presented and MSS for process development (PD-MSS) is proposed to effectively apply the MSS to the process development. The four-level PD-MSS is composed of PLS (process-level simulation), FLS (fluid-level simulation), mFLS (microfluid-level simulation) and MLS (molecular-level simulation). Characteristics and methods of each level, as well as connectivity between the four levels are described. For example in PD-MSS, absorption column, fluidized-bed reactor, and adsorption process are introduced. For successful MSS, it is necessary to understand the multiscale nature in chemical engineering problems, to develop models representing physical phenomena at each scale and between scales, to develop softwares implementing mathematical models on computer, and to have strong computing facilities. MSS should be performed within acceptable accuracy of simulation results, available computation capacity, and reasonable efficiency of calculation. Macroscopic and microscopic scale simulations have been developed relatively well but mesoscale simulation shows a bottleneck in MSS. Therefore, advances on mesoscale models and simulation tools are required to accurately and reliably predict physical phenomena. PD-MSS will find its way into a sustainable technology being able to shorten the duration and to reduce the cost for process development.
Keywords
Multiscale Simulation; Process Development; Process-Level Simulation (PLS); Fluid-Level Simulation (FLS); Microfluid-Level Simulation (mFLS); Molecular-Level Simulation (MLS);
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lim, Y.-I. and Lee, A., "Simulation of a Six-zone Simulated Moving Bed Chromatographic Process for NPK Fertilizer Production," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45(1), 1-11(2007).   과학기술학회마을
2 Lim, Y.-I., "A Nonequilibrium Adsorption Model Satisfying Electro-neutrality Condition for Ion-exchange Chromatography," Chem. Eng. Commun., 195(8), 1011-1042(2008).   DOI   ScienceOn
3 Ernest, M. V., Whitley, R. D., Ma, Z. and Wang, N. H. L., "Effects of Mass Action Equilibria on Fixed-bed Multicomponent Ionexchange Dynamics," Ind. Eng. Chem. Res., 36(1), 212-226(1997).   DOI   ScienceOn
4 Verma, N. and Mewes, D., "Lattice Boltzmann Methods for Simulation of Micro and Macrotransport in a Packed Bed of Porous Adsorbents Under Non-isothermal Condition," Comput. Math. Appl., 58(5), 1003-1014(2009).   DOI   ScienceOn
5 Li, J., "Real Time Simulation of Chemical Processes: Dream or reality," ECCE (European conference on chemical engineering), September 25-29, Berlin, Germany(2011).
6 Braatz, R. D., "Multiscale Simulation in Science and Engineering," AIChE annual meeting, November 8-13, Nashville, TN, USA (2009).
7 E, W., Principles of Multiscale Modeling, 1st ed., Cambridge University Press, New York, NY(2011).
8 Jaworski, Z. and Zakrzewska, B., "Towards Multiscale Modelling in Product Engineering," Comput. Chem. Eng., 35(3), 434-445 (2011).   DOI   ScienceOn
9 Fermeglia, M. and Pricl, S., "Multiscale Molecular Modeling in Nanostructured Material Design and Process System Engineering," Comput. Chem. Eng., 33(10), 1701-1710(2009).   DOI   ScienceOn
10 Delgado-Buscalioni, R., Coveney, P. V., Riley, G. D. and Ford, R. W., "Hybrid Molecular-continuum Fluid Models: Implementation Within a General Coupling Framework," Phil. Trans. R. Soc. A, 363(1833), 1975-1985(2005).   DOI   ScienceOn
11 Raimondeau, S. and Vlachos, D. G., "Recent Developments on Multiscale, Hierarchical Modeling of Chemical Reactors," Chem. Eng. J., 90(1-2), 3-23(2002).   DOI   ScienceOn
12 Vlachos, D. G., "Multiscale Modeling for Emergent Behavior, Complexity, and Combinatorial Explosion," AlChE J., 58(5), 1314-1325 (2012).   DOI   ScienceOn
13 Kim, W., Yun, C., Jung, K. T., Park, S. and Kim, S. H., "Computer-aided Scale-up of a Packed-bed Tubular Reactor," Comput. Chem. Eng., 39, 96-104(2012).   DOI   ScienceOn
14 Ideker, T., Galitski, T. and Hood, L., "A New Approach to Decoding Life: Systems Biology," Annu. Rev. Genomics Hum. Genet., 2, 343-372(2001).   DOI   ScienceOn
15 Vlachos, D. G., in Guy, B. M. (Ed.), A review of multiscale analysis: examples from systems biology, materials engineering, and other fluid-surface interacting systems, Academic Press, 1-61(2005).
16 Son, H. J., Lim, Y.-I. and Yoo, K. S., "Multiscale Simulation for Adsorption Process Development: a Case Study of n-hexane Adsorption on Activated Carbon," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46(6), 1087-1094(2008).   과학기술학회마을
17 Lee, U., Kim, K. and Oh, M., "Multiscale Modeling and Simulation of Water Gas Shift Reactor," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45(6), 582-590(2007).   과학기술학회마을
18 Braatz, R. D., Alkire, R. C., Rusli, E. and Drews, T. O., "Multiscale Systems Engineering with Applications to Chemical Reaction Processes," Chem. Eng. Sci., 59(22-23), 5623-5628(2004).   DOI   ScienceOn
19 Steinhauser, M. O., Computational Multiscale Modeling of Solids and Fluids, 1st ed., Springer, Berlin, Germany(2008).
20 Nguyen, T. D. B., "Multiscale Simulation Approach to Process Development: Computational Fluid Dynamics (CFD) and Process Modeling," Ph.D. Dissertation, Hankyong National University, Anseong, Korea(2011).
21 ASPEN Technology, "ASPEN Plus," http://www.aspentech.com/.
22 Perkins, J., "Education in Process Systems Engineering: Past, Present and Future," Comput. Chem. Eng., 26(2), 283-293(2002).   DOI   ScienceOn
23 PSE-Enterprise, "gProms," http://www.psenterprise.com/gproms/.
24 Ge, W., Wang, W., Yang, N., Li, J., Kwauk, M., et al., "Mesoscale Oriented Simulation Towards Virtual Process Engineering (VPE)-The EMMS Paradigm," Chem. Eng. Sci., 66(19), 4426- 4458(2011).   DOI   ScienceOn
25 Lim, Y.-I., "ESCAPE 12 (12th European Symposium on Computer- Aided Process Engineering)," KOSEN conference report, CR02- 36(2002).
26 Stephanopoulos, G. and Reklaitis, G. V., "Process Systems Engineering: From Solvay to Modern Bio- and Nanotechnology: A History of Development, Successes and Prospects for the Future," Chem. Eng. Sci., 66(19), 4272-4306(2011).   DOI   ScienceOn
27 Chen, J. H., Linstead, E., Swamidass, S. J., Wang, D. and Baldi, P., "ChemDB Update—full-text Search and Virtual Chemical Space," Bioinformatics, 23(17), 2348-2351(2007).   DOI   ScienceOn
28 NIST, "NIST Chemistry WebBook," http://webbook.nist.gov/ chemistry/.
29 ChERIC, "KDB (Korea thermodynamial properties data bank)," http://www.cheric.org/.
30 Gani, R., Hytoft, G., Jaksland, C. and Jensen, A. K., "An Integrated Computer Aided System for Integrated Design of Chemical Processes," Comput. Chem. Eng., 21(10), 1135-1146(1997).   DOI   ScienceOn
31 Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, 2nd ed., John Wiley & Sons, New York, NY(2007).
32 ANSYS, "ANSYS Fluent User's Guide," ANSYS, Inc., Canonsburg, Pennsylvania, USA(2012).
33 Geng, Y. and Che, D., "An Extended DEM-CFD Model for Char Combustion in a Bubbling Fluidized Bed Combustor of Inert Sand," Chem. Eng. Sci., 66(2), 207-219(2011).   DOI   ScienceOn
34 Gidaspow, D., Multiphase flow and fluidization: Continuum and kinetic theory description, 1st ed., Academic Press(1994).
35 Gidaspow, D., Jung, J. and Singh, R. K., "Hydrodynamics of Fluidization Using Kinetic Theory: An Emerging Paradigm: 2002 Flour- Daniel Lecture," Powder Technol., 148(2-3), 123-141(2004).   DOI   ScienceOn
36 Nguyen, T. D. B., Seo, M. W., Lim, Y.-I., Song, B.-H. and Kim, S.-D., "CFD Simulation with Experiments in a Dual Circulating Fluidized Bed Gasifier," Comput. Chem. Eng., 36, 48-56(2012).   DOI   ScienceOn
37 Bertrand, F., Leclaire, L. A. and Levecque, G., "DEM-based Models for the Mixing of Granular Materials," Chem. Eng. Sci., 60(8-9), 2517-2531(2005).   DOI   ScienceOn
38 Andrews, M. J. and O'Rourke, P. J., "The Multiphase Particlein- cell (MP-PIC) Method for Dense Particulate Flows," Int. J. Multiphase Flow, 22(2), 379-402(1996).   DOI   ScienceOn
39 Snider, D. M., Clark, S. M. and O'Rourke, P. J., "Eulerian- Lagrangian Method for Three-dimensional Thermal Reacting Flow with Application to Coal Gasifiers," Chem. Eng. Sci., 66(6), 1285- 1295(2011).   DOI   ScienceOn
40 Chen, S. and Doolen, G. D., "Lattice Boltzmann Method for Fluid Flows," Annu. Rev. Fluid Mech., 30(1), 329-364(1998).   DOI   ScienceOn
41 Begum, R. and Basit, M. A., "Lattice Boltzmann Method and Its Applications to Fluid Flow Problems," Europ. J. Sci. Res., 22(2), 216-231(2008).
42 Succi, S., Filippova, O., Smith, G. and Kaxiras, E., "Applying the Lattice Boltzmann Equation to Multiscale Fluid Problems," Comput. Sci. Eng., 3(6), 26-37(2001).
43 Nourgaliev, R. R., Dinh, T. N., Theofanous, T. G. and Joseph, D., "The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications," Int. J. Multiphase Flow, 29(1), 117-169(2003).   DOI   ScienceOn
44 Verma, N., Salem, K. and Mewes, D., "Simulation of Micro- and Macro-transport in a Packed Bed of Porous Adsorbents by Lattice Boltzmann Methods," Chem. Eng. Sci., 62(14), 3685-3698(2007).   DOI   ScienceOn
45 Aidun, C. K. and Clausen, J. R., "Lattice-Boltzmann Method for Complex Flows," Annu. Rev. Fluid Mech., 42(1), 439-472(2010).   DOI   ScienceOn
46 Ungerer, P., Nieto-Draghi, C., Rousseau, B., Ahunbay, G. and Lachet, V., "Molecular Simulation of the Thermophysical Properties of Fluids: From Understanding Toward Quantitative Predictions," J. Mol. Liq., 134(1-3), 71-89(2007).   DOI   ScienceOn
47 Arya, G., Chang, H. C. and Maginn, E. J., "A Critical Comparison of Equilibrium, Non-equilibrium and Boundary-driven Molecular Dynamics Techniques for Studying Transport in Microporous Materials," J. Chem. Phys., 115(17), 8112-8124(2001).   DOI   ScienceOn
48 Sun, H., "COMPASS: An Ab Initio Force-field Optimized for Condensed-phase Applications - Overview with Details on Alkane and Benzene Compounds," J. Phys. Chem. B, 102(38), 7338-7364 (1998).   DOI   ScienceOn
49 Lim, Y.-I., Bhatia, S. K., Nguyen, T. X. and Nicholson, D., "Prediction of Carbon Dioxide Permeability in Carbon Slit Pores," J. Membr. Sci., 355(1-2), 186-199(2010).   DOI   ScienceOn
50 Lim, Y.-I. and Bhatia, S. K., "Simulation of Methane Permeability in Carbon Slit Pores," J. Membr. Sci., 369(1-2), 319-328(2011).   DOI   ScienceOn
51 Mota, J. P. B., Esteves, I. A. A. C. and Rostam-Abadi, M., "Dynamic Modelling of an Adsorption Storage Tank Using a Hybrid Approach Combining Computational Fluid Dynamics and Process Simulation," Comput. Chem. Eng., 28(11), 2421-2431(2004).   DOI   ScienceOn
52 Bezzo, F., Macchietto, S. and Pantelides, C. C., "A General Framework for the Integration of Computational Fluid Dynamics and Process Simulation," Comput. Chem. Eng., 24(2-7), 653-658(2000).   DOI   ScienceOn
53 Bezzo, F., Macchietto, S. and Pantelides, C. C., "A General Methodology for Hybrid Multizonal/CFD Models: Part I. Theoretical Framework," Comput. Chem. Eng., 28(4), 501-511(2004).   DOI   ScienceOn
54 Balaji, S., Du, J., White, C. M. and Ydstie, B. E., "Multi-scale Modeling and Control of Fluidized Beds for the Production of Solar Grade Silicon," Powder Technol., 199(1), 23-31(2010).   DOI   ScienceOn
55 O'Connell, S. T. and Thompson, P. A., "Molecular Dynamics- continuum Hybrid Computations: A Tool for Studying Complex Fluid Flows," Phys. Rev. E, 52(6), R5792-R5795(1995).   DOI   ScienceOn
56 Yasuda, S. and Yamamoto, R., "A Model for Hybrid Simulations of Molecular Dynamics and CFD," Phys. Fluids, 20, 113101(2008).   DOI   ScienceOn
57 Son, H. J., "Adsorption Isotherms and Diffusivity Predictions on Adsorbent Using Molecular Simulation," MS thesis, Hankyong National University, Anseong, Korea(2009).
58 Son, H. J. and Lim, Y. I., "Multiscale Simulation Starting at the Molecular Level for Adsorption Process Development," Chinese J. Chem. Eng., 16(1), 108-111(2008).   DOI   ScienceOn
59 Wang, F. Y., Zhu, Z. H., Massarotto, P. and Rudolph, V., "Kinetic Mobility and Connectivity in Nanopore Networks," AlChE J., 58(2), 364-376(2012).   DOI   ScienceOn
60 Raynal, L. and Royon-Lebeaud, A., "A Multi-scale Approach for CFD Calculations of Gas-liquid Flow Within Large Size Column Equipped with Structured Packing," Chem. Eng. Sci., 62(24), 7196- 7204(2007).   DOI   ScienceOn
61 Guiochon, G., "Preparative Liquid Chromatography," J. Chromatogr. A, 965(1-2), 129-161(2002).   DOI   ScienceOn
62 Rajendran, A., Paredes, G. and Mazzotti, M., "Simulated Moving Bed Chromatography for the Separation of Enantiomers," J. Chromatogr. A, 1216(4), 709-738(2009).   DOI   ScienceOn
63 Lim, Y.-I., Lee, J., Bhatia, S. K., Lim, Y.-S. and Han, C., "Improvement of Para-xylene SMB Process Performance on An Industrial Scale," Ind. Eng. Chem. Res., 49(7), 3316-3327(2010).   DOI   ScienceOn
64 UOP, "Parex: Aromatics," http://www.uop.com.
65 Pais, L. S., Loureiro, J. M. and Rodrigues, A. E., "Modeling Strategies for Enantiomers Separation by SMB Chromatography," AlChE J., 44(3), 561-569(1998).   DOI   ScienceOn
66 Lim, Y. I. and Jorgensen, S. B., "Optimization of a Six-zone Simulated- moving-bed Chromatographic Process," Ind. Eng. Chem. Res., 46(11), 3684-3697(2007).   DOI   ScienceOn
67 Sutanto, P. S., Lim, Y.-I. and Lee, J., "Bed-line Flushing and Optimization in Simulated Moving-bed Recovery of Para-xylene," Sep. Purif. Technol., 96, 168-181(2012).   DOI   ScienceOn
68 Bentley, J. and Kawajiri, Y., "Prediction-correction Method for Optimization of Simulated Moving Bed Chromatography," AlChE J., DOI: 10.1002/aic.13856(2012).   DOI   ScienceOn
69 Coasne, B. and Fourkas, J. T., "Structure and Dynamics of Benzene Confined in Silica Nanopores," J. Phys. Chem. C, 115(31), 15471-15479(2011).   DOI   ScienceOn