Browse > Article
http://dx.doi.org/10.5714/CL.2018.28.096

Improved heat-spreading properties of fluorinated graphite/epoxy film  

Kim, Kyung Hoon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Han, Jeong-In (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kang, Da-Hee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Carbon letters / v.28, no., 2018 , pp. 96-99 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shahil KMF, Balandin AA. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun, 152, 1331 (2012). https://doi.org/10.1016/j.ssc.2012.04.034.   DOI
2 Nika DL, Pokatilov EP, Askerov AS, Balandin AA. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B, 79, 155413 (2009). https://doi.org/10.1103/physrevb.79.155413.   DOI
3 Raunija TSK, Supriya N. Thermo-electrical properties of randomly oriented carbon/carbon composite. Carbon Lett, 22, 25 (2017). https://doi.org/10.5714/CL.2017.22.025.
4 Kim JH, Lee HI, Lee YS. The enhanced thermal and mechanical properties of graphite foams with a higher crystallinity and apparent density. Mater Sci Eng A, 696, 174 (2017). https://doi.org/10.1016/j.msea.2017.04.071.   DOI
5 Lee C, Han YJ, Seo YD, Nakabayashi K, Miyawaki J, Santamaria R, Menendez R, Yoon SH, Jang J. $C_4F_8$ plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries. Carbon, 103, 28 (2016). https://doi.org/10.1016/j.carbon.2016.02.060.   DOI
6 Lee YS. Syntheses and properties of fluorinated carbon materials. J Fluorine Chem, 128, 392 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.014.   DOI
7 Yun SM, Kim JW, Jung MJ, Nho YC, Kang PH, Lee YS. An XPS study of oxyfluorinated multiwalled carbon nano tubes. Carbon Lett, 8, 292 (2007). https://doi.org/10.5714/cl.2007.8.4.292.   DOI
8 Im JS, Kim JG, Lee SH, Lee YS. Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference. Colloids Surf A Physicochem Eng Aspects, 364, 151 (2010). https://doi.org/10.1016/j.colsurfa.2010.05.015.   DOI
9 Im JS, Kim JG, Lee YS. Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon, 47, 2640 (2009). https://doi.org/10.1016/j.carbon.2009.05.017.   DOI
10 Kim C, Baek JY, Kim DH, Kim JT, Lopez DH, Kim T, Kim H. Decoupling of thermal and electrical conductivities by adjusting the anisotropic nature in tungsten diselenide causing significant enhancement in thermoelectric performance. J Ind Eng Chem, 60, 458 (2018). https://doi.org/10.1016/j.jiec.2017.11.033.   DOI
11 Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC. Graphite nanoplatelet: epoxy composite thermal interface materials. J Phys Chem C, 111, 7565 (2007). https://doi.org/10.1021/jp071761s.   DOI
12 Kim K, Kim M, Hwang Y, Kim J. Chemically modified boron nitride- epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int, 40, 2047 (2014). https://doi.org/10.1016/j.ceramint.2013.07.117.   DOI
13 Kim JH, Kim KH, Park MS, Bae TS, Lee YS. Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity. Carbon Lett, 17, 65 (2016). https://doi.org/10.5714/cl.2016.17.1.065.   DOI
14 Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci, 36, 914 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004.   DOI
15 Kim K, Kim J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Compos Part B Eng, 93, 67 (2016). https://doi.org/10.1016/j.compositesb.2016.02.052.   DOI
16 Yuan W, Xiao Q, Li L, Xu T. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl Therm Eng, 106, 1067 (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.089.   DOI
17 Donnay M, Tzavalas S, Logakis E. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos Sci Technol, 110, 152 (2015). https://doi.org/10.1016/j.compscitech.2015.02.006.   DOI
18 Yu C, Zhang J, Li Z, Tian W, Wang L, Luo J, Li Q, Fan X, Yao Y. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos Part A Appl Sci Manuf, 98, 25 (2017). https://doi.org/10.1016/j.compositesa.2017.03.012.   DOI
19 Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). https://doi.org/10.1021/nl0731872.   DOI
20 Wang Z, Qi R, Wang J, Qi S. Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram Int, 41, 13541 (2015). https://doi.org/10.1016/j.ceramint.2015.07.148.   DOI
21 Shou QL, Cheng JP, Fang JH, Lu FH, Zhao JJ, Tao XY, Liu F, Zhang XB. Thermal conductivity of poly vinylidene fluoride composites filled with expanded graphite and carbon nanotubes. J Appl Polym Sci, 127, 1697 (2013). https://doi.org/10.1002/app.37876.   DOI
22 Chu K, Jia C, Li W. Thermal conductivity enhancement in carbon nanotube/Cu-Ti composites. Appl Phys A, 110, 269 (2013). https://doi.org/10.1007/s00339-012-7450-0.   DOI
23 Che J, Cagin T, Goddard WA III. Thermal conductivity of carbon nanotubes. Nanotechnology, 11, 65 (2000). https://doi.org/10.1088/0957-4484/11/2/305.   DOI
24 Wang F, Drzal LT, Qin Y, Huang Z. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci, 50, 1082 (2015). https://doi.org/10.1007/s10853-014-8665-6.   DOI