Browse > Article
http://dx.doi.org/10.5714/CL.2018.28.111

Synthesis of Polypyrrole-based Nitrogen-containing Porous Carbon Nanotubes for CO2 Adsorption  

Liu, Jiamin (Department of Polymer Materials and Engineering, Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University)
Jin, Biao (Instrumental Analysis Center, Yanbian University)
Meng, Long-Yue (Department of Polymer Materials and Engineering, Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University)
Lee, Kyung-Hee (Research Institute of Standars and Analysis, Inha University)
Publication Information
Carbon letters / v.28, no., 2018 , pp. 111-115 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ren XM, Li H, Chen J, Wei LJ, Modak A, Yang HQ, Yang QH. N-doped porous carbons with exceptionally high $CO_2$ selectivity for $CO_2$ capture. Carbon, 114, 473 (2017). https://doi.org/10.1016/j.carbon.2016.12.056.   DOI
2 Adeniran B, Mokaya R. Is N-doping in porous carbons beneficial for $CO_2$ storage? Experimental demonstration of the relative effects of pore size and N-doping. Chem Mater, 28, 994 (2016). https://doi.org/10.1021/acs.chemmater.5b05020.   DOI
3 Molyanyan E, Aghamiri S, Talaie MR, Iraji N. Experimental study of pure and mixtures of $CO_2$ and $NH_4$ adsorption on modified carbon nanotubes. Int J Environ Sci Technol, 13, 2001 (2016). https://doi.org/10.1007/s13762-016-0989-0.   DOI
4 Li Y, Zou B, Hu CW, Cao MH. Nitrogen-doped porous carbon nanofiber webs for efficient $CO_2$ capture and conversion. Carbon, 99, 79 (2016). https://doi.org/10.1016/j.carbon.2015.11.074.   DOI
5 Wickramaratne NP, Xu JT, Wang M, Zhu L, Dai LM, Jaroniec M. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and $CO_2$ adsorption. Chem Mater, 26, 2820 (2014). https://doi.org/10.1021/cm5001895.   DOI
6 Babu DJ, Bruns M, Schneider R, Gerthsen D, Schneider JJ. Understanding the influence of N-doping on the $CO_2$ adsorption characteristics in carbon nanomaterials. J Phys Chem C, 121, 616 (2017). https://doi.org/10.1021/acs.jpcc.6b11686.
7 Geng Z, Xiao QF, Lv H, Li B, Wu HB, Lu YF, Zhang CM. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective $CO_2$ capture. Sci Rep, 6, 30049 (2016). https://doi.org/10.1038/srep30049.   DOI
8 To JWF, He JJ, Mei JG, Haghpanah R, Chen Z, Kurosawa T, Chen SC, Bae WG, Pan LJ, Tok JBH, et al. Hierarchical N-doped carbon as $CO_2$ adsorbent with high $CO_2$ selectivity from rationally designed polypyrrole precursor. J Am Chem Soc, 138, 1001 (2016). https://doi.org/10.1021/jacs.5b11955.   DOI
9 Ma XC, Li LQ, Wang SB, Lu MM, Li HL, Ma WW, Keener TC. Ammonia-treated porous carbon derived from ZIF-8 for enhanced $CO_2$ adsorption. Appl Surf Sci, 369, 390 (2016). https://doi.org/10.1016/j.apsusc.2016.01.274.   DOI
10 Lim G, Lee KB, Ham HC. Effect of N-containing functional groups on $CO_2$ adsorption of carbonaceous materials: a density functional theory approach. J Phys Chem C, 120, 8087 (2016). https://doi.org/10.1021/acs.jpcc.5b12090.   DOI
11 Ullah R, Atilhan M, Anaya B, Al-Muhtaseb S, Aparicio S, Patel H, Thirion D, Yavuz CT. Investigation of Ester and Amide Linker based porous organic polymers for carbon dioxide capture and separation at wide temperatures and pressures. ACS Appl Mater Interfaces, 8, 20772 (2016). https://doi.org/10.1021/acsami.6b05927.   DOI
12 Bai BC, Kim EA, Lee CW, Lee YS, Im JS. Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for $CO_2$ adsorption. Appl Surf Sci, 353, 158 (2015). https://doi.org/10.1016/j.apsusc.2015.06.046.   DOI
13 Xing W, Liu C, Zhou ZY, Zhang L, Zhou J, Zhuo SP, Yan ZF, Gao H, Wang GQ, Qiao SZ. Superior $CO_2$ uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci, 5, 7323 (2012). https://doi.org/10.1039/c2ee21653a.   DOI
14 Jeon DH, Bae ST, Park SJ. Preparation and characterization of chemically activated carbon materials for $CO_2$ capture. Carbon Lett, 17, 85 (2016). https://doi.org/10.5714/cl.2016.17.1.085.   DOI
15 Heo YJ, Le MUT, Park SJ. Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM-48 mesoporous silica. Carbon Lett, 18, 62 (2016). https://doi.org/10.5714/cl.2016.18.062.   DOI
16 Yu JM, Xie LH, Li JR, Ma YG, Seminario JM, Balbuena PB. $CO_2$ capture and separations using MOFs: computational and experimental studies. Chem Rev, 117, 9674 (2017). https://doi.org/10.1021/acs.chemrev.6b00626.   DOI
17 Basnayake SA, Su J, Zou XD, Balkus KJ. Carbonate-based zeolitic imidazolate frame work for highly selective $CO_2$ capture. Inorg Chem, 54, 1816 (2015). https://doi.org/10.1021/ic5027174.   DOI
18 Kim S, Lee YM. Rigid and microporous polymers for gas separation membranes. Prog Polym Sci, 43, 1 (2015). https://doi.org/10.1016/j.progpolymsci.2014.10.005.   DOI
19 Yuan H, Meng LY, Park SJ. KOH-activated graphite nanofibers as $CO_2$ adsorbents. Carbon Lett, 19, 99 (2016). https://doi.org/10.5714/cl.2016.19.099.   DOI
20 Hwang DG, Jeong E, Lee SG. Density functional theory study of $NH_4$ and $CO_2$ adsorption by fluorinated graphene. Carbon Lett, 20, 81 (2016). https://doi.org/10.5714/cl.2016.20.081.   DOI
21 Tourani S, Khorasheh F, Rashidi AM, Safekordi AA. Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes. J Ind Eng Chem, 28, 202 (2015). https://doi.org/10.1016/j.jiec.2015.02.015.   DOI
22 Chandra V, Yu SU, Kim SH, Yoon YS, Kim DY, Kwon AH, Meyy-appan M, Kim KS. Highly selective $CO_2$ capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem Commun, 48, 735 (2012). https://doi.org/10.1039/c1cc15599g.   DOI
23 Wang Q, Luo JZ, Zhong ZY, Borgna A. $CO_2$ capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci, 4, 42 (2011). https://doi.org/10.1039/c0ee00064g.   DOI
24 Kim JH, Kim DY, Jeong E, Lee YS. Characteristics of fluorinated CNTs added carbon foams. Appl Surf Sci, 360, 1009 (2016). https://doi.org/10.1016/j.apsusc.2015.11.111.   DOI
25 Kim HS, Jung Y, Kim S. Capacitance behaviors of conducting polymer-coated graphene nanosheets composite electrodes containing multi-walled carbon nanotubes as additives. Carbon Lett, 23, 63 (2017). https://doi.org/10.5714/CL.2017.23.063.
26 Hao GP, Li WC, Qian D, Lu AH. Rapid synthesis of nitrogendoped porous carbon monolith for $CO_2$ capture. Adv Mater, 22, 853 (2010). https://doi.org/10.1002/adma.200903765.   DOI
27 Fatemi S, Vesali-Naseh M, Cyrus M, Hashemi J. Improving $CO_2$/$NH_4$ adsorptive selectivity of carbon nanotubes by functionalization with nitrogen-containing groups. Chem Eng Res Des, 89, 1669 (2011). https://doi.org/10.1016/j.cherd.2010.10.002.   DOI
28 Wang MR, Hu LT, Lei XK, Fang J, Lai YQ. Pre-surface functionalization of commercial conductive carbon for effective N doping as a highly efficient electrocatalyst. Mater Lett, 207, 33 (2017). https://doi.org/10.1016/j.matlet.2017.07.047.   DOI