Browse > Article
http://dx.doi.org/10.5714/CL.2018.27.117

Control of interlayer spacing of expanded graphite for improved hydrogen storage capacity  

Lee, Hyo In (Department of Chemistry, Inha University)
Kim, Won Jong (Department of Chemistry, Inha University)
Heo, Young-Jung (Department of Chemistry, Inha University)
Son, Yeong-Rae (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.27, no., 2018 , pp. 117-120 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Woolsey TS. Two treaties of Paris. Am J Int Law, 13, 81 (1919). https://doi.org/10.2307/2187976.   DOI
2 Hsu CW. Constructing an evaluation model for hydrogen application pathways. Int J Hydrogen Energy, 38, 15836 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.100.   DOI
3 Afgan NH, Carvalho MG. Sustainability assessment of hydrogen energy systems. Int J Hydrogen Energy, 29, 1327 (2004). https://doi.org/10.1016/j.ijhydene.2004.01.005.   DOI
4 Afgan NH, Veziroglu A, Carvalho MG. Multi-criteria evaluation of hydrogen system options. Int J Hydrogen Energy, 32, 3183 (2007). https://doi.org/10.1016/j.ijhydene.2007.04.045.   DOI
5 Dutta S. A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem, 20, 1148 (2014). https://doi.org/10.1016/j.jiec.2013.07.037.   DOI
6 Zhou L. Progress and problems in hydrogen storage methods. Renewable Sustainable Energy Rev, 9, 395 (2005). https://doi.org/10.1016/j.rser.2004.05.005.   DOI
7 Kaestner P, Michler T, Weidner H, Rie KT, Brauer G. Plasma nitrided austenitic stainless steels for automotive hydrogen applications. Surf Coat Technol, 203, 897 (2008). https://doi.org/10.1016/j.surfcoat.2008.08.024.   DOI
8 Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). https://doi.org/10.1016/j.micromeso.2008.02.027.   DOI
9 Mu Y, Rabaey K, Rozendal RA, Yuan ZG, Keller J. Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol, 43, 5137 (2009). https://doi.org/10.1021/es900057f.   DOI
10 Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon, 45, 1686 (2007). https://doi.org/10.1016/j.carbon.2007.03.038.   DOI
11 Kim BJ, Lee YS, Park SJ. A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers. Int J Hydrogen Energy, 33, 4112 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.077.   DOI
12 Choi EK, Jeon IY, Oh SJ, Baek JB. "Direct" grafting of linear macromolecular "wedges" to the edge of pristine graphite to prepare edge-functionalized graphene-based polymer composites. J Mater Chem, 20, 10936 (2010). https://doi.org/10.1039/C0JM01728K.   DOI
13 Zhao H, Lin R. Preparation of boric acid modified expandable graphite and its influence on polyethylene combustion characteristics. J Chil Chem Soc, 61, 2767 (2016). http://dx.doi.org/10.4067/S0717-97072016000100004.   DOI
14 Han YJ, Park SJ. Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid. Carbon Lett, 16, 281 (2015). https://doi.org/10.5714/CL.2015.16.4.281.   DOI
15 Wind J, Spah R, Kaiser W, Bohm G. Metallic bipolar plates for PEM fuel cells. J Power Sources, 105, 256 (2002). https://doi.org/10.1016/S0378-7753(01)00950-8.   DOI
16 Murr LE, Staudhammer KP, Hecker SS. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part II. Microstructural study. Metall Mater Trans A, 13, 627 (1982). https://doi.org/10.1007/BF02644428.   DOI
17 Broom DP, Hirscher M. Irreproducibility in hydrogen storage material research. Energy Environ Sci, 9, 3368 (2016). https://doi.org/10.1039/C6EE01435F.   DOI
18 Kim BJ, Lee YS, Park SJ. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. J Colloid Interface Sci, 318, 530 (2008). https://doi.org/10.1016/j.jcis.2007.10.018.   DOI
19 Strobel R, Garche J, Moseley PT, Jorissen L, Wolf G. Hydrogen storage by carbon materials. J Power Sources, 159, 781 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.047.   DOI
20 Klebanoff LE, Keller JO. 5 Years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE). Int J Hydrogen Energy, 38, 4533 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.051.   DOI
21 Yildirim T, Ciraci S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett, 94, 175501 (2005). https://doi.org/10.1103/PhysRevLett.94.175501.   DOI
22 Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'keeffe M, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks. Science, 300, 1127 (2003). https://doi.org/10.1126/science.1083440.   DOI
23 Lin X, Telepeni I, Blake AJ, Dailly A, Brown CM, Simmons JM, Zoppi M, Walker GS, Thomas KM, Mays TJ, Hubberstey P, Champness NR, Schroder M. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc, 131, 2159 (2009). https://doi.org/10.1021/ja806624j.   DOI
24 Lee HM, Heo YJ, An KH, Jung SC, Chung DC, Park SJ, Kim BJ. A study on optimal pore range for high pressure hydrogen storage behaviors by porous hard carbon materials prepared from a polymeric precursor. Int J Hydrogen Energy, 43, 5894 (2018). https://doi.org/10.1016/j.ijhydene.2017.09.085.   DOI
25 Bond WL. Precision lattice constant determination. Acta Crystallogr, 13, 814 (1960). https://doi.org/10.1107/S0365110X60001941.   DOI
26 Aga RS, Fu CL, Krcmar M, Morris JR. Theoretical investigation of the effect of graphite interlayer spacing on hydrogen absorption. Phys Rev B, 76, 165404 (2007). https://doi.org/10.1103/Phys-RevB.76.165404.   DOI
27 Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu DJ. Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem Commun, 46, 4547 (2010). https://doi.org/10.1039/C0CC00235F.   DOI
28 Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.019.   DOI
29 McKeown NB, Gahnem B, Msayib KJ, Budd PM, Tattershall CE, Mahmood K, Tan S, Book D, Langmi HW, Walton A. Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew Chem Int Ed, 45, 1804 (2006). https://doi.org/10.1002/anie.200504241.   DOI
30 Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). https://doi.org/10.1038/35104634.   DOI
31 Kim JD, Roh JS, Kim MS. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber. Carbon Lett, 21, 51 (2017). http://dx.doi.org/10.5714/CL.2017.21.051.   DOI
32 Kim DK, An KH, Bang YH, Kwac LK, Oh SY, Kim BJ. Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method. Carbon Lett, 19, 32 (2016). http://dx.doi.org/10.5714/CL.2016.19.032.   DOI
33 Farooq U, Doh CH, Pervez SA, Kim DH, Lee SH, Saleem M, Sim SJ, Choi JH. Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison. Carbon Lett, 17, 39 (2016). http://dx.doi.org/10.5714/CL.2016.17.1.039.   DOI
34 Yasmin A, Luo JJ, Daniel IM. Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol, 66, 1182 (2006). https://doi.org/10.1016/j.compscitech.2005.10.014.   DOI
35 Slorach SA. The WHO/UNEP pilot project on assessment of human exposure to pollutants through biological monitoring. Environ Monit Assess, 2, 33 (1982). https://doi.org/10.1007/bf00399153.   DOI
36 Silanikove N, Koluman N. Impact of climate change on the dairy industry in temperate zones: predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Res, 123, 27 (2015). https://doi.org/10.1016/j.smallrumres.2014.11.005.   DOI
37 Lototskyy M, Yartys VA. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials. J Alloys Compd, 645, S365 (2015). https://doi.org/10.1016/j.jallcom.2014.12.107.   DOI
38 Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science, 323, 610 (2009). https://doi.org/10.1126/science.1167130.   DOI