Browse > Article
http://dx.doi.org/10.5714/CL.2017.24.010

Applications of carbon-based materials in solid phase micro-extraction: a review  

Guo, Jian (Department of Chemical Engineering, Yanbian University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Meng, Long-Yue (Department of Chemical Engineering, Yanbian University)
Jin, Xinghua (Department of Chemical Engineering, Yanbian University)
Publication Information
Carbon letters / v.24, no., 2017 , pp. 10-17 More about this Journal
Abstract
With continuous development in the field of sample preparation technology, solid phase micro-extraction (SPME) has been widely used in analytical chemistry for high extraction efficiency and convenient operation. Different materials lead to different extraction results. Among existing materials, carbon-based materials are still attracting attention from scientists due to their excellent physical and chemical properties as well as their modifiable surfaces, which could enhance the adsorption effects of SPME fiber. This review introduces the preparation methods and applications of different kinds of carbon-based material coatings on fibers. In addition, directions for future research on carbon material composites are discussed.
Keywords
surface treatment; carbon; coating; adsorption;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wang D, Duan CQ, Shi Y, Zhu BQ, Javed HU, Wang J. Free and glycosidically bound volatile compounds in sun-dried raisins made from different fragrance intensities grape varieties using a validated HS-SPME with GC-MS method. Food Chem, 228, 125 (2017). https://doi.org/10.1016/j.foodchem.2017.01.153.   DOI
2 Fortini M, Migliorini M, Cherubini C, Cecchi L, Calamai L. Multiple internal standard normalization for improving HS-SPMEGC-MS quantitation in virgin olive oil volatile organic compounds (VOO-VOCs) profile. Talanta, 165, 641 (2017). https://doi.org/10.1016/j.talanta.2016.12.082.   DOI
3 Souza-Silva EA, Gionfriddo E, Shirey R, Sidisky L, Pawliszyn J. Methodical evaluation and improvement of matrix compatible PDMS-overcoated coating for direct immersion solid phase microextraction gas chromatography (DI-SPME-GC)-based applications. Anal Chim Acta, 920, 54 (2016). https://doi.org/10.1016/j.aca.2016.03.015.   DOI
4 Pei M, Zhang Z, Huang X, Wu Y. Fabrication of a polymeric ionic liquid-based adsorbent for multiple monolithic fiber solid-phase microextraction of endocrine disrupting chemicals in complicated samples. Talanta, 165, 152 (2017). https://doi.org/10.1016/j.talanta.2016.12.043.   DOI
5 Ouyang G, Pawliszyn J. SPME in environmental analysis. Anal Bioanal Chem, 386, 1059 (2006).   DOI
6 Garcia-Esteban M, Ansorena D, Astiasaran I, Ruiz J. Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME). Talanta, 64, 458 (2004). https://doi.org/10.1016/j.talanta.2004.03.007.   DOI
7 Lambropoulou D, Sakkas V, Albanis T. Validation of an SPME apmethod, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters. Anal Bioanal Chem, 374, 932 (2002). https://doi.org/10.1007/s00216-002-1549-7.   DOI
8 Wang JX, Jiang DQ, Gu ZY, Yan XP. Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A, 1137, 8 (2006). https://doi.org/10.1016/j.chroma.2006.10.003.   DOI
9 Xiao DL, Yuan D, He H, Pham-Huy C, Dai H, Wang C, Zhang C. Mixed hemimicelle solid-phase extraction based on magnetic carbon nanotubes and ionic liquids for the determination of flavonoids. Carbon, 72, 274 (2014). https://doi.org/10.1016/j.carbon.2014.01.075.   DOI
10 Salehi-Khojin A, Lin KY, Field CR, Masel RI. Nonthermal currentstimulated desorption of gases from carbon nanotubes. Science, 329, 1327 (2016). https://doi.org/10.1126/science.1194210.
11 Habila MA, Yilmaz E, Alothman ZA, Soylak M. Combination of dispersive liquid-liquid microextraction and multivariate optimization for separation-enrichment of traces lead by flame atomic absorption spectrometry. J Ind Eng Chem, 37, 306 (2016). https://doi.org/10.1016/j.jiec.2016.03.037.   DOI
12 Wacker U, Rutz T, Loffler N, Conrad AC, Tutken T, Bottcher ME, Fiebig J. Clumped isotope thermometry of carbonate-bearing apatite: revised sample pre-treatment, acid digestion, and temperature calibration. Chem Geol, 443, 97 (2016). https://doi.org/10.1016/j.chemgeo.2016.09.009.   DOI
13 Moreda-Pineiro J, Moreda-Pineiro A. Recent advances in combining microextraction techniques for sample pre-treatment. Trends Anal Chem, 71, 265 (2015). https://doi.org/10.1016/j.trac.2015.02.025.   DOI
14 Meng LY, Park SJ. Effect of growth of carbon nanofibers on the electrical conductivity of carbon fibers. Macromol Res, 19, 209 (2011). https://doi.org/10.1007/s13233-011-0209-1.   DOI
15 Poerschmann J, Gorecki T, Kopinke FD. Sorption of very hydrophobic organic compounds onto poly(dimethylsiloxane) and dissolved humic organic matter. 1. Adsorption or partitioning of VHOC on PDMS-coated solid-phase microextraction fibers: a never-ending story. Environ Sci Technol, 34, 3824 (2000). https://doi.org/10.1021/es000038b.   DOI
16 Zuin VG, Lopes AL, Yariwake JH, Augusto F. Application of a novel sol-gel polydimethylsiloxane-poly(vinyl alcohol) solidphase microextraction fiber for gas chromatographic determination of pesticide residues in herbal infusions. J Chromatogr A, 1056, 21 (2004). https://doi.org/10.1016/j.chroma.2004.07.074.   DOI
17 Moon CW, Meng LY, Im SS, Rhee KY, Park SJ. Improvement of the electrical conductivity of carbon fibers through the growth of carbon nanofibers. J Nanosci Nanotechnol, 11, 6193 (2011). https://doi.org/10.1166/jnn.2011.4398.   DOI
18 Meng LY, Moon CW, Im SS, Lee KH, Byun JH, Park SJ. Effect of Ni catalyst dispersion on the growth of carbon nanofibers onto carbon fibers. Microporous Mesoporous Mater, 142, 26 (2011). https://doi.org/10.1016/j.micromeso.2010.10.008.   DOI
19 Zheng JP. Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochem Solid State Lett, 2, 359 (1999).   DOI
20 Lou XW, Deng D, Lee JY, Archer LA. Preparation of $SnO_2$/carbon composite hollow spheres and their lithium storage properties. Chem Mater, 20, 6562 (2008). https://doi.org/10.1021/cm801607e.   DOI
21 Zhang T, Huang D, Yang Y, Kang F, Gu J. $Fe_3O_4$/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater Sci Eng B, 178, 1 (2013). https://doi.org/10.1016/j.mseb.2012.06.005.   DOI
22 Feng J, Sun M, Bu Y, Luo C. Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction. Talanta, 148, 313 (2016). https://doi.org/10.1016/j.talanta.2015.11.001.   DOI
23 Liu X, Ji Y, Zhang Y, Zhang H, Liu M. Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples. J Chromatogr A, 1165, 10 (2007). https://doi.org/10.1016/j.chroma.2007.07.057.   DOI
24 Amiri A. Solid-phase microextraction-based sol-gel technique. Trends Anal Chem, 75, 5 (2016). https://doi.org/10.1016/j.trac.2015.10.003.
25 Song XY, Chen J, Shi YP. Different configurations of carbon nanotubes reinforced solid-phase microextraction techniques and their applications in the environmental analysis. Trends Anal Chem, 86, 263 (2017). https://doi.org/10.1016/j.trac.2016.11.006.   DOI
26 Ai Y, Wu M, Li L, Zhao F, Zeng B. Highly selective and effective solid phase microextraction of benzoic acid esters using ionic liquid functionalized multiwalled carbon nanotubes-doped polyaniline coating. J Chromatogr A, 1437, 1 (2016). https://doi.org/10.1016/j.chroma.2016.01.072.   DOI
27 Sarafraz-Yazdi A, Amiri A, Rounaghi G, Eshtiagh-Hosseini H. Determination of non-steroidal anti-inflammatory drugs in water samples by solid-phase microextraction based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes coated fiber. Anal Chim Acta, 720, 134 (2012). https://doi.org/10.1016/j.aca.2012.01.021.   DOI
28 Guo DF, Zhu XB, Jiang HY. Study on preparation and properties of a new solid-phase microextraction probe with carbon nanofiber coating. Chin J Anal Lab, 28, 18 (2009).
29 Li Q, Wang X, Yuan D. Preparation of solid-phase microextraction fiber coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples. J Chromatogr A, 1216, 1305 (2009). https://doi.org/10.1016/j.chroma.2008.12.082.   DOI
30 Maghsoudi S, Noroozian E. HP-SPME of volatile polycyclic aromatic hydrocarbons from water using multiwalled carbon nanotubes coated on a steel fiber through electrophoretic deposition. Chromatographia, 75, 913 (2012). https://doi.org/10.1007/s10337-012-2283-8.   DOI
31 Cui MY, Wang J, Li DH. Carbonfiber microextraction/headspace in-situ derivatization technique for GC-MS determination of phytohormones. Proceedings of the 28th Chinese Chemical Society Congress, Chengdu, China (2012).
32 Fang RB, Zhang WH, Wang J, Zhang KL, Er Z. Preparation of carbon matrixsolid phase microextraction for adsorption. Chin J Chromatogr, 17, 453 (1999).
33 Jia JP, Feng X, Fang NH, Huang JL. Improvement of the determination method of benzene, toluene, ethylbenzene and xylene (BTEX) in water using activated carbon fiber solid-phase microextraction/gas chromatography-mass spectrometry (GC-MS). Chin J Chromatogr, 20, 63 (2002).
34 Rahimi M, Dehkordi AM. Reactive absorption in packed bed columns in the presence of magnetic nanoparticles and magnetic field: modeling and simulation. J Ind Eng Chem, 45, 131 (2017). https://doi.org/10.1016/j.jiec.2016.09.016.   DOI
35 Li N, Song YP, Tang H, Wang Y. Recent developments in sample preparation and data pre-treatment in metabonomics research. Arch Biochem Biophys, 589, 4 (2016). https://doi.org/10.1016/j.abb.2015.08.024.   DOI
36 Barrionuevo WR, Lancas FM. Comparison of liquid-liquid extraction (LLE), solid-phase extraction (SPE), and solid-phase microextraction (SPME) for pyrethroid pesticides analysis from enriched river water. Bull Environ Contam Toxicol, 69, 123 (2002). https://doi.org/10.1007/s00128-002-0018-5   DOI
37 Raghubanshi H, Dikio ED, Naidoo EB. The properties and applications of helical carbon fibers and related materials: a review. J Ind Eng Chem, 44, 23 (2016). https://doi.org/10.1016/j.jiec.2016.08.023.   DOI
38 Jia J, Li D, Wan J, Yu X. Characterization and mechanism analysis of graphite/C-doped $TiO_2$ composite for enhanced photocatalytic performance. J Ind Eng Chem, 33, 162 (2016). https://doi.org/10.1016/j.jiec.2015.09.030.   DOI
39 San AT, Joyce DC, Hofman PJ, Macnish AJ, Webb RI, Matovic NJ, Williams CM, De Voss JJD, Wong SH, Smyth HE. Stable isotope dilution assay (SIDA) and HS-SPME-GCMS quantification of key aroma volatiles for fruit and sap of Australian mango cultivars. Food Chem, 221, 613 (2017). https://doi.org/10.1016/j.foodchem.2016.11.130.   DOI
40 Cuevas FJ, Moreno-Rojas JM, Ruiz-Moreno MJ. Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges. Food Chem, 221, 1930 (2017). https://doi.org/10.1016/j.foodchem.2016.11.156.   DOI
41 Zhao D, Li Z, Liu L, Zhang Y, Ren D, Li J. Progress of preparation and application of graphene/carbon nanotube composite materials. Acta Chim Sin, 72, 185 (2014). https://doi.org/10.6023/A13080857.   DOI
42 Yuan H, Meng LY, Park SJ. KOH-activated graphite nanofibers as $CO_2$ adsorbents. Carbon Lett, 19, 99 (2016). https://doi.org/10.5714/CL.2016.19.099.   DOI
43 Park MS, Lee S, Jung MJ, Kim HG, Lee YS. NO gas sensing ability of activated carbon fibers modified by an electron beam for improvement in the surface functional group. Carbon Lett, 20, 19 (2016). https://doi.org/10.5714/CL.2016.20.019.   DOI
44 Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 339, 182 (2013). https://doi/org/10.1126/science.1228061.   DOI
45 Wang GJ, Liu Y, Wu YJ. Self-assembly of carbon nanotubes modified by hydropropylcellulose in aqueous solution. Carbon, 71, 343 (2014). https://doi.org/10.1016/j.carbon.2014.01.043.
46 Vatanpour V, Zoqi N. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes. Appl Surf Sci, 396, 1478 (2017). https://doi.org/10.1016/j.apsusc.2016.11.195.   DOI
47 Fu QG, Zhuang L, Li HJ, Feng L, Jing JY, Tan BY. Effect of carbon nanotubes on the toughness, bonding strength and thermal shock resistance of SiC coating for C/C-ZrC-SiC composites. J Alloys Compd, 645, 206 (2015). https://doi.org/10.1016/j.jallcom.2015.04.223.   DOI
48 Feng X, Li Y, Jing R, Jiang X, Tian M. Detection of organophosphorous pesticides in soil samples with multiwalled carbon nanotubes coating SPME fiber. Bull Environ Contam Toxicol, 93, 769 (2014). https://doi.org/10.1007/s00128-014-1379-2.   DOI
49 Ghiasvand A, Dowlatshah S, Nouraei N, Heidari N, Yazdankhah F. A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and honey. J Chromatogr A, 1406, 87 (2015). https://doi.org/10.1016/j.chroma.2015.06.052.   DOI
50 Tahmasebi Z, Davarani SSH, Asgharinezhad AA. An efficient approach to selective electromembrane extraction of naproxen by means of molecularly imprinted polymer-coated multi-walled carbon nanotubes-reinforced hollow fibers. J Chromatogr A, 1470, 19 (2016). https://doi.org/10.1016/j.chroma.2016.09.067.   DOI
51 Chen JM, Zeng JB, Chen WF, Huang XL, Chen X. Development of new coatings for solid phase microextraction. Prog Chem, 21, 1922 (2009).
52 Xiao C, Han S, Wang Z, Xing J, Wu C. Application of the polysilicone fullerene coating for solid-phase microextraction in the determination of semi-volatile compounds. J Chromatogr A, 927, 121 (2001). https://doi.org/10.1016/S0021-9673(01)01046-9.   DOI
53 Cui YH, Yao WX, Zhang SL, Wang HD, Zhong FF. Determination of pyrethroid pesticide residues in environmental water and juice samples by graphene/polydimethylsilane fiber assisted headspace solid-phase microextraction coupled with gas chromatography. J Instrum Anal, 34, 375 (2015).
54 Jia QN, Zhao GC. Preparation of graphene-based solid phase microextraction fiber and its determination of polychlorinated biphenyls. J Instrum Anal, 32, 541 (2013).
55 Matin AA, Maleki R, Farajzadeh MA, Farhadi K, Hosseinzadeh R, Jouyban A. Headspace SPME-GC method for acetone analysis and its biomedical application. Chromatographia, 66, 383 (2007). https://doi.org/10.1365/s10337-007-0348-x.   DOI
56 Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int, 86, 412 (2003).
57 Ouyang G, Pawliszyn J. Recent developments in SPME for onsite analysis and monitoring. Trends Anal Chem, 25, 692 (2006). https://doi.org/10.1016/j.trac.2006.05.005.   DOI
58 Chen P, Zhang GY. Carbon-based spintronics. Sci China Phys Mech Astron, 56, 207 (2013). https://doi.org/10.1007/s11433-012-4970-8.   DOI
59 Li QL, Wang LL, Wang X, Wang ML, Zhao RS. Magnetic metal-organic nanotubes: An adsorbent for magnetic solid-phase extraction of polychlorinated biphenyls from environmental and biological samples. J Chromatogr A, 1449, 39 (2016). https://doi.org/10.1016/j.chroma.2016.04.060.   DOI
60 Liu H, Li J, Liu X, Jiang S. A novel multiwalled carbon nanotubes bonded fused-silica fiber for solid phase microextraction-gas chromatographic analysis of phenols in water samples. Talanta, 78, 929 (2009). https://doi.org/10.1016/j.talanta.2008.12.061.   DOI
61 Kim BJ, Park JS, Hwang YJ, Park JS. Characteristics of copper meshes coated with carbon nanotubes via electrophoretic deposition. Appl Surf Sci, 380, 2 (2016). https://doi.org/10.1016/j.apsusc.2016.02.110.   DOI
62 Hekmat F, Sohrabi B, Rahmanifar MS, Jalali A. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent. Appl Surf Sci, 341, 109 (2015). https://doi.org/10.1016/j.apsusc.2015.02.142.   DOI
63 Wu M, Wang L, Zeng B, Zhao F. Fabrication of poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene nanosheets composite coating for headspace solid-phase microextraction of benzene derivatives. J Chromatogr A, 1364, 45 (2014). https://doi.org/10.1016/j.chroma.2014.08.080.   DOI
64 Jiang H, Yan DZ, Chen Y, Miao ZW, Ding XT, Ye LL. Preparation and application of ordered mesoporous carbon-coated solid microextraction fiber. Chin J Anal Lab, (10), 1147 (2014).
65 Rahimi A, Hashemi P, Badiei A, Arab P, Ghiasvand AR. CMK-3 nanoporous carbon as a new fiber coating for solid-phase microextraction coupled to gas chromatography-mass spectrometry. Anal Chim Acta, 695, 58 (2011). https://doi.org/10.1016/j.aca.2011.03.037.   DOI
66 Regiart M, Magallanes JL, Barrera D, Villarroel-Rocha J, Sapag K, Raba J, Bertolino FA. An ordered mesoporous carbon modified electrochemical sensor for solid-phase microextraction and determination of triclosan in environmental samples. Sens Actuators B Chem, 232, 765 (2016). https://doi.org/10.1016/j.snb.2016.04.031.   DOI