Browse > Article
http://dx.doi.org/10.5714/CL.2017.23.074

Effects of synthesis pressure conditions on the preparation of graphene-like carbonaceous materials from organic liquid precursors by a solvothermal method  

Kim, Kwan-Woo (Multifunctional Carbon Materials Division, Korea Institute of Carbon Convergence Technology)
Kim, Byoung Suhk (Department of Organic Materials & Fiber Engineering, Chonbuk National University)
Lee, Sang Won (Multifunctional Carbon Materials Division, Korea Institute of Carbon Convergence Technology)
Chung, Dong Chul (Multifunctional Carbon Materials Division, Korea Institute of Carbon Convergence Technology)
Kim, Byung-Joo (Multifunctional Carbon Materials Division, Korea Institute of Carbon Convergence Technology)
Publication Information
Carbon letters / v.23, no., 2017 , pp. 74-78 More about this Journal
Keywords
graphene; solvothermal; synthesis; organic liquid precursor; supercritical;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Meng X, Geng D, Liu J, Banis MN, Zhang Y, Li R, Sun X. Nonaqueous approach to synthesize amorphous/crystalline metal oxide- graphene nanosheet hybrid composites. J Phys Chem C, 114, 18330 (2010). https://doi.org/10.1021/jp105852h.   DOI
2 Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chem Soc Rev, 39, 3157 (2010). https://doi.org/10.1039/ b923596e.   DOI
3 Paek SM, Yoo EJ, Honma I. Enhanced cyclic performance and lithium storage capacity of $SnO_2$/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett, 9, 72 (2009). https://doi.org/10.1021/nl802484w.   DOI
4 Chen YL, Hu ZA, Chang YQ, Wang HW, Zhang ZY, Yang YY, Wu HY. Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J Phys Chem C, 115, 2563 (2011). https://doi.org/10.1021/jp109597n.   DOI
5 Ren J, Zhang X, Chen Y. Graphene accelerates osteoblast attachment and biomineralization. Carbon Lett, 22, 42 (2017). https://doi.org/10.5714/CL.2017.22.042.   DOI
6 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). https://doi. org/10.1126/science.1102896.   DOI
7 Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G. STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci, 264, 261 (1992). https:// doi.org/10.1016/0039-6028(92)90183-7.   DOI
8 Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M. Substratefree gas-phase synthesis of graphene sheets. Nano Lett, 8, 2012 (2008). https://doi.org/10.1021/nl8011566.   DOI
9 Van Bommel AJ, Crombeen JE, Van Tooren A. LEED and Auger electron observations of the SiC(0001) surface. Surf Sci, 48, 463 (1975). https://doi.org/10.1016/0039-6028(75)90419-7.   DOI
10 Forbeaux I, Themlin JM, Debever JM. Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys Rev B, 58, 16396 (1998). https://doi. org/10.1103/physrevb.58.16396.   DOI
11 Ebbesen TW, Ajayan PM. Large-scale synthesis of carbon nanotubes. Nature, 358, 220 (1992).   DOI
12 Ando Y, Iijima S. Preparation of carbon nanotubes by arc-discharge evaporation. Jpn J Appl Phys, 32, 107 (1993). https://doi. org/10.1143/jjap.32.l107.   DOI
13 Ando Y, Zhao X, Ohkohchi M. Production of petal-like graphite sheets by hydrogen arc discharge. Carbon, 35, 153 (1997). https:// doi.org/10.1016/s0008-6223(96)00139-x.   DOI
14 Wu Y, Qiao P, Chong T, Shen Z. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv Mater, 14, 64 (2002). https://doi.org/10.1002/1521- 4095(20020104)14:1<64::AID-ADMA64>3.0.CO;2-G.   DOI
15 Nakajima T, Matsuo Y. Formation process and structure of graphite oxide. Carbon, 32, 469 (1994). https://doi.org/10.1016/0008-6223(94)90168-6.   DOI
16 Celzard A, Krzesiñska M, Bégin D, Marêché JF, Puricelli S. Furdin G. Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites. Carbon, 40, 557 (2002). https://doi.org/10.1016/s0008-6223(01)00140-3.   DOI
17 Liu GQ, Yan M. The preparation of expanded graphite using fine flaky graphite. New Carbon Mater, 17, 13 (2002).
18 Kurt R, Bonard JM, Karimi A. Morphology and field emission properties of nano-structured nitrogenated carbon films produced by plasma enhanced hot filament CVD. Carbon, 39, 1723 (2001). https://doi.org/10.1016/s0008-6223(00)00309-2.   DOI
19 Choucair M, Thordarson P, Stride JS. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol, 4, 30 (2009). https://doi.org/10.1038/nnano.2008.365.   DOI
20 Shang NG, Au FCK, Meng XM, Lee CS, Bello I, Lee ST. Uniform carbon nanoflake films and their field emissions. Chem Phys Lett, 358, 187 (2002). https://doi.org/10.1016/s0009-2614(02)00430-x.   DOI
21 Roy D, Chhowalla, Wang H, Sano N, Alexandrou I, Clyne TW, Amaratunga GAJ. Characterisation of carbon nano-onions using Raman spectroscopy. Chem Phys Lett, 373, 52 (2003). https://doi. org/10.1016/s0009-2614(03)00523-2.   DOI
22 Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). https://doi.org/10.1038/nmat1849.   DOI
23 Kawakami M, Karato T, Takenaka T, Yokoyama S. Structure analysis of coke, wood charcoal and bamboo charcoal by Raman spectroscopy and their reaction rate with $CO_2$. ISIJ Int, 45, 1027 (2005). https://doi.org/10.2355/isijinternational.45.1027.   DOI
24 Yang J, Tighe S. A review of advances of nanotechnology in asphalt mixtures. Procedia Soc Behav Sci, 96, 1269 (2013). https:// doi.org/10.1016/j.sbspro.2013.08.144.   DOI
25 Yang Z, Hollar J, Shi X. Surface-sulfonated polystyrene microspheres improve crack resistance of carbon microfiber-reinforced Portland cement mortar. J Mater Sci, 45, 3497 (2010). https://doi. org/10.1007/s10853-010-4386-7.   DOI
26 Li R, Xiao X, Amirkhanian S, You Z, Huang J. Developments of nano materials and technologies on asphalt materials: a review. Constr Build Mater, 143, 633 (2017). https://doi.org/10.1016/j. conbuildmat.2017.03.158.   DOI
27 Kim BJ, Lee YS, Park SJ. A gas control by metal nanoclusterssupported porous carbon nanofibers. Solid State Phenom, 119, 5 (2007). https://doi.org/10.4028/www.scientific.net/ssp.119.5.   DOI
28 Kim BJ, Byun JH, Park SJ. Effects of graphenes/CNTs co-reinforcement on electrical and mechanical properties of HDPE matrix nanocomposites. Bull Korean Chem Soc, 31, 2261 (2010). https://doi.org/10.5012/bkcs.2010.31.8.2261.   DOI
29 Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed, 48, 7752 (2009). https://doi.org/10.1002/anie.200901678.   DOI
30 Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22, 3906 (2010). https://doi.org/10.1002/ adma.201001068.   DOI
31 Cho YL, Lee JW, Park C, Song YI, Suh SJ. Study of complex electrodeposited thin film with multi-layer graphene-coated metal nanoparticles. Carbon Lett, 21, 68 (2017). https://doi.org/10.5714/ cl.2017.21.068.   DOI