Browse > Article
http://dx.doi.org/10.5714/CL.2017.21.086

Formation of nanojoints between carbon nanotubes and copper nanoparticles  

Mittal, Jagjiwan (Department of Material Science and Engineering, National Cheng Kung University)
Lin, Kwang Lung (Department of Material Science and Engineering, National Cheng Kung University)
Publication Information
Carbon letters / v.21, no., 2017 , pp. 86-92 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 84, 4613 (2000). https://doi.org/10.1103/physrevlett.84.4613.   DOI
2 Sun Y, Zhu L, Jiang H, Lu J, Wang W, Wong CP. A paradigm of carbon nanotube interconnects in microelectronic packaging. J Electron Mater, 37, 1691 (2008). https://doi.org/10.1007/s11664-008-0533-1.   DOI
3 Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 292, 706 (2001). https://doi.org/10.1126/science.1058782.   DOI
4 Naeemi A, Meindl JD. Performance Modeling for Carbon Nanotube Interconnects. In: Javey A, Kong J, eds. Carbon Nanotube Electronics, Springer, Boston, 181 (2009).
5 Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett, 79, 1172 (2001). https://doi.org/10.1063/1.1396632.   DOI
6 de Pablo PJ, Graugnard E, Walsh B, Andres RP, Datta S, Reifenberger R. A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes. Appl Phys Lett, 74, 323 (1999). https://doi.org/10.1063/1.123011.   DOI
7 Srivastava N, Banerjee KA. A comparative scaling analysis of metallic and carbon nanotube interconnections for nanometer scale VLSI technologies. Proceedings of the 21st international VLSI Multilevel Interconnect Conference (VMIC), Waikoloa, HI, 393 (2004).
8 Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nat Nanotechnol, 2, 605 (2007). https://doi.org/10.1038/nnano.2007.300.   DOI
9 Kang SK, Sarkhel AK. Lead (Pb)-free solders for electronic packaging. J Electron Mater, 23, 701 (1994). https://doi.org/10.1007/bf02651362.   DOI
10 Li L, Yih P, Chung DDL. Effect of the second filler which melted during composite fabrication on the electrical properties of short fiber polymer-matrix composites J Electron Mater, 21, 1065 (1992). https://doi.org/10.1007/bf02665885.   DOI
11 Magdassi S, Grouchko M, Kamyshny A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 3, 4626 (2010). https://doi.org/10.3390/ma3094626.   DOI
12 Hu A, Guo JY, Alarifi H, Patane G, Zhou Y, Compagnini G, Xu CX. Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl Phys Lett, 97, 153117 (2010). https://doi.org/10.1063/1.3502604.   DOI
13 Klauk H, D'Andrade B, Jackson TN. All-organic integrated emissive pixels. Proceedings of the 57th Annual Device Research Conference Digest, Santa Barbara, CA, 162 (1999). https://doi.org/10.1109/drc.1999.806356.
14 Kim HS, Dhage SR, Shim DE, Hahn H. Intense pulsed light sintering of copper nanoink for printed electronics. Appl Phys A, 97, 791 (2009). https://doi.org/10.1007/s00339-009-5360-6.   DOI
15 Kang JS, Kim HS, Ryn J, Hahn T, Jang S, Joung JW. Inkjet printed electronics using copper nanoparticle ink. J Mater Sci Mater Electron, 21, 1213 (2010). https://doi.org/10.1007/s10854-009-0049-3.   DOI
16 Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Xia Y, Moon J. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater, 18, 679 (2008). https://doi.org/10.1002/adfm.200700902.   DOI
17 Mittal J, Lin KL. Connecting carbon nanotubes using Sn. J Nanosci Nanotechnol, 13, 5590 (2013). https://doi.org/10.1166/jnn.2013.7560.   DOI
18 Mittal J, Lin KL. Exothermic low temperature sintering of Cu nanoparticles. Mater Charact, 109, 19 (2015). https://doi.org/10.1016/j.matchar.2015.09.009.   DOI
19 Harris PJF. Carbon nanotubes and other graphitic structures as contaminants on evaporated carbon films. J Microsc, 186, 88 (1997). https://doi.org/10.1046/j.1365-2818.1997.1930754.x.   DOI
20 Mittal J, Lin KL. The formation of electric circuits with carbon nanotubes and copper using tin solder. Carbon, 49, 4385 (2011). https://doi.org/10.1016/j.carbon.2011.06.029.   DOI
21 Hwang CW, Kim KS, Suganuma K. Interface in lead-free soldering. J Electron Mater, 32, 1249 (2003). https://doi.org/10.1007/s11664-003-0019-0.   DOI
22 Pan CC, Lin KL. The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn-Zn solder on Cu substrate. J Appl Phys, 109, 103513 (2011). https://doi.org/10.1063/1.3592182.   DOI
23 Lin YW, Lin KL. The early stage dissolution of Ni and the nucleation of Ni-Sn intermetallic compound at the interface during the soldering of Sn-3.5Ag on a Ni substrate. J Appl Phys, 108, 063536 (2010). https://doi.org/10.1063/1.3484493.   DOI
24 Lin YW, Lin KL. Nucleation behaviors of the intermetallic compounds at the initial interfacial reaction between the liquid Sn3.0Ag0.5Cu solder and Ni substrate during reflow. Intermetallics, 32, 6 (2013). https://doi.org/10.1016/j.intermet.2012.07.035.   DOI
25 Nai SML, Wei J, Gupta M. Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder. J Electron Mater, 37, 515 (2008). https://doi.org/10.1007/s11664-008-0379-6.   DOI
26 Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Opening carbon nanotubes with oxygen and implications for filling. Nature, 362, 522 (1993). https://doi.org/10.1038/362522a0.   DOI
27 Hayamizu Y, Yamada T, Mizuno K, Davis RC, Futaba DN, Yamura M, Hita K. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nat Nanotechnol, 3, 289 (2008). https://doi.org/10.1038/nnano.2008.98.   DOI
28 Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S. Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science, 285, 1719 (1999). https://doi.org/10.1126/science.285.5434.1719.   DOI
29 Nihei M, Kondo D, Kawabata A, Sato S, Shioya H, Sakaue M, Iwai T, Ohfuti M, Awano Y. Low-resistance multi-walled carbon [IC interconnect applications]. Proceedings of the IEEE 2005 International Interconnect Technology Conference, Burlingame, CA, 234 (2005). https://doi.org/10.1109/iitc.2005.1499995.