Browse > Article
http://dx.doi.org/10.5714/CL.2016.19.023

Carbon rich fly ash and their nanostructures  

Salah, Numan (Center of Nanotechnology, King Abdulaziz University)
Habib, Sami S. (Department Aeronautical Engineering, King Abdulaziz University)
Khan, Zishan H. (Deptartmnet Applied Science & Humanities, Jamia Millia Islamia)
Alshahrie, Ahmed (Center of Nanotechnology, King Abdulaziz University)
Memic, Adnan (Center of Nanotechnology, King Abdulaziz University)
Al-ghamdi, Attieh A. (Center of Nanotechnology, King Abdulaziz University)
Publication Information
Carbon letters / v.19, no., 2016 , pp. 23-31 More about this Journal
Abstract
Carbon rich fly ash was recently reported to have compositions that are ideal for use as a precursor and catalyst for carbon nanotube growth. This fly ash powder is mostly composed of pure carbon, predominantly present as sp2. In this work, the effect of sonication time on the morphology and structural properties of carbon rich fly ash particles is reported. The obtained results show that ultrasound treatment is an effective tool for producing ultrafine particles/fragments with higher porosity, which might be suitable for the adsorption of gasses. Moreover, carbon nanoparticles (CNPs) of this fly ash were produced in parallel using the ball milling technique, and were evaluated as reinforcements for epoxy based composites. These CNPs have almost spherical shapes with particle sizes of around 30 nm. They were found to have strong C=O carbonyl group bonds, which might be generated during the ball milling process. The tensile testing results of a fly ash CNP reinforced epoxy composite showed significant improvements in the mechanical properties, mainly in the stiffness of the polymer. The stiffness value was increased by around 23% of that of neat epoxy. These CNPs with chemically active groups might also be useful for other applications.
Keywords
fly ash; carbon materials; nanoparticles; sonication; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Mofarrah A, Husain T. Use of heavy oil fly ash as a color ingredient in cement mortar. Int J Concr Struct Mater, 7, 111 (2013). http://dx.doi.org/10.1007/s40069-013-0042-3.   DOI
2 Tsai SL, Tsai MS. Study on the physical and chemical characteristics, yield and TCLP test of oil-fired fly ash. Min Metall, 41, 57(1997).
3 Hsieh YM, Tsai MS. Physical and chemical analyses of unburned carbon from oil-fired fly ash. Carbon, 41, 2317 (2003). http://dx.doi.org/10.1016/s0008-6223(03)00283-5.   DOI
4 Habib SS. Naturally endowed oxide nanoparticles from carbon ash in Saudi Arabia. Int J Nano Biomater, 2, 437 (2009). http://dx.doi.org/10.1504/ijnbm.2009.027741.   DOI
5 Mofarrah A, Husain T, Danish EY. Investigation of the potential use of heavy oil fly ash as stabilized fill material for construction. J Mater Civ Eng, 24, 684 (2012). http://dx.doi.org/10.1061/(asce)mt.1943-5533.0000442.   DOI
6 Al-Malack MH, Bukhari AA, Al-Amoudi OS, Al-Muhanna HH, Zaidi TH. Characteristics of fly ash produced at power and water desalination plants firing fuel oil. Int J Environ Res, 7, 455 (2013).
7 Ahmaruzzaman M. A review on the utilization of fly ash. Prog Energy Combust Sci, 36, 327 (2010). http://dx.doi.org/10.1016/j.pecs.2009.11.003.   DOI
8 Al-Ghouti MA, Al-Degs YS, Ghrair A, Khoury H, Ziedan M. Extraction and separation of vanadium and nickel from fly ash produced in heavy fuel power plants. Chem Eng J, 173, 191 (2011). http://dx.doi.org/10.1016/j.cej.2011.07.080.   DOI
9 Naqvi AA, Garwan MA, Maslehuddin M, Nagadi MM, Al-Amoudi OSB, Khateeb-ur-Rehman, Raashid M. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen. Appl Radiat Isot, 67, 1707 (2009). http://dx.doi.org/10.1016/j.apradiso.2009.03.094.   DOI
10 Ilic M, Cheeseman C, Sollars C, Knight J. Mineralogy and microstructure of sintered lignite coal fly ash. Fuel, 82, 331 (2003). http://dx.doi.org/10.1016/s0016-2361(02)00272-7.   DOI
11 Škvára F, Kopecký L, Šmilauer V, Bittnar Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater, 168, 711 (2009). http://dx.doi.org/10.1016/j.jhazmat.2009.02.089.   DOI
12 Nath DCD, Sahajwalla V. Application of fly ash as a catalyst for synthesis of carbon nanotube ribbons. J Hazard Mater, 192, 691 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.05.072.   DOI
13 Qian GR, Shi J, Cao YL, Xu YF, Chui PC. Properties of MSW fly ash–calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals. J Hazard Mater, 152, 196 (2008). http://dx.doi.org/10.1016/j.jhazmat.2007.06.118.   DOI
14 Yasui A, Kamiya Y, Sugiyama S, Ono S, Noda H, Ichikawa Y. Synthesis of carbon nanotubes on fly ashes by chemical vapor deposition processing. IEEJ Trans Electr Electron Eng, 4, 787 (2009). http://dx.doi.org/10.1002/tee.20481.   DOI
15 Dunens OM, Mackenzie KJ, Harris AT. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. Environ Sci Technol, 43, 7889 (2009). http://dx.doi.org/10.1021/es901779c.   DOI
16 Silvestre-Albero J, Rodríguez-Reinoso F. Novel Carbon Materials for CO2 Adsorption. In: Tascón JMD, ed. Novel Carbon Adsorbents, 1st ed., Elsevier Ltd, London, 583 (2012).
17 Haerle R, Riedo E, Pasquarello A, Baldereschi A. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys Rev B, 65, 045101 (2002). http://dx.doi.org/10.1103/physrevb.65.045101.   DOI
18 Khachatryan AK, Aloyan SG, May PW, Sargsyan R, Khachatryan VA, Baghdasaryan VS. Graphite-to-diamond transformation induced by ultrasound cavitation. Diam Relat Mater, 17, 931 (2008). http://dx.doi.org/10.1016/j.diamond.2008.01.112.   DOI
19 Hayes CJ, Merle JK, Hadad CM. The chemistry of reactive radical intermediates in combustion and the atmosphere. Adv Phys Org Chem, 43, 79 (2009). http://dx.doi.org/10.1016/s0065-3160(08)00003-8.   DOI
20 Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK. Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys, 113, 919 (2009). http://dx.doi.org/10.1016/j.matchemphys.2008.08.065.   DOI
21 Jung HY, Jung SM, Kim L, Suh JS. A simple method to control the diameter of carbon nanotubes and the effect of the diameter in field emission. Carbon, 46, 969 (2008). http://dx.doi.org/10.1016/j.carbon.2008.03.006.   DOI
22 Murakami T, Hasebe Y, Kisoda K, Nishio K, Isshiki T, Harima H. Effective catalyst on SiO2 in ethanol CVD for growth of single-walled carbon nanotubes. Diam Relat Mater, 17, 1467 (2008). http://dx.doi.org/10.1016/j.diamond.2008.01.086.   DOI
23 Chai SP, Zein SHS, Mohamed AR. The effect of reduction temperature on Co-Mo/Al2O3 catalysts for carbon nanotubes formation. Appl Catal A: Gen, 326, 173 (2007). http://dx.doi.org/10.1016/j.apcata.2007.04.020.   DOI
24 Sugime H, Noda S. Millimeter-tall single-walled carbon nanotube forests grown from ethanol. Carbon, 48, 2203 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.024.   DOI
25 Salah N, Habib SS, Khan ZH, Memic A, Nahas MN. Growth of carbon nanotubes on catalysts obtained from carbon rich fly ash. Dig J Nanomater Biostruct, 7, 1279 (2012).
26 Salah NA. Method of forming carbon nanotubes from carbon-rich fly ash. US patent 8,609,189 B2 (2013).
27 Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon, 45, 293 (2007). http://dx.doi.org/10.1016/j.carbon.2006.09.022.   DOI
28 Kicińskia W, Szala M, Bystrzejewski M. Sulfur-doped porous carbons: synthesis and applications. Carbon, 68, 1 (2014). http://dx.doi.org/10.1016/j.carbon.2013.11.004.   DOI
29 Lopes FVS, Grande CA, Rodrigues AE. Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance. Chem Eng Sci, 66, 303(2011). http://dx.doi.org/10.1016/j.ces.2010.10.034.   DOI
30 Babu DJ, Lange M, Cherkashinin G, Issanin A, Staudt R, Schneider JJ. Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotubes arrays. Carbon, 61, 616 (2013).   DOI
31 Salah N, Habib SS, Khan ZH, Memic A, Azam A, Alarfaj E, Zahed N, Al-Hamedi S. High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int J Nanomedicine, 6, 863 (2011). http://dx.doi.org/10.2147/ijn.s18267.   DOI
32 Choi YC. Micro-Raman characterization of isolated single wall carbon nanotubes synthesized using Xylene. Carbon Lett, 14, 175 (2013). http://dx.doi.org/10.5714/cl.2013.14.3.175.   DOI
33 Mišković-Stanković V, Eraković S, Janković A, Vukašinović-Sekulić M, Mitrić M, Jung YC, Park SJ, Rhee KY. Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder. Carbon Lett, 16, 233 (2015). http://dx.doi.org/10.5714/cl.2015.16.4.233.   DOI
34 Sim Y, Park J, Kim YJ, Seong MJ, Hong S. Synthesis of graphene layers using graphite dispersion in aqueous surfactant solutions. J Korean Phy Soc 58, 938 (2011). http://dx.doi.org/10.3938/jkps.58.938.   DOI
35 Guittonneau F, Abdelouas A, Grambow B, Huclier S. The effect of high power ultrasound on an aqueous suspension of graphite. Ultrason Sonochem, 17, 391 (2010). http://dx.doi.org/10.1016/j.ultsonch.2009.08.011.   DOI
36 Meng LY, Park SJ. Preparation and characterization of reduced graphene nanosheets via pre-exfoliation of graphite flakes. Bull Korean Chem Soc, 33, 209 (2012). http://dx.doi.org/10.5012/bkcs.2012.33.1.209.   DOI
37 Belviso C, Cavalcante F, Lettino A, Fiore S. Effects of ultrasonic treatment on zeolite synthesized from coal fly ash. Ultrason Sonochem, 18, 661 (2011). http://dx.doi.org/10.1016/j.ultsonch.2010.08.011.   DOI
38 Krishnamoorthy K, Kim GS, Kim SJ. Graphene nanosheets: ultrasound assisted synthesis and characterization. Ultrason Sonochem, 20, 644 (2013). http://dx.doi.org/10.1016/j.ultsonch.2012.09.007.   DOI
39 Chu PK, Li L. Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys, 96, 253 (2006). http://dx.doi.org/10.1016/j.matchemphys.2005.07.048.   DOI
40 Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A: Appl Sci Manuf, 41, 1345 (2010). http://dx.doi.org/10.1016/j.compositesa.2010.07.003.   DOI
41 Bekyarova E, Thostenson ET, Yu A, Itkis ME, Fakhrutdinov D, Chou TW, Haddon RC. Functionalized single-walled carbon nanotubes for carbon fiber–epoxy composites. J Phys Chem C, 111, 17865 (2007). http://dx.doi.org/10.1021/jp071329a.   DOI
42 Kim JA, Seong DG, Kang TJ, Youn JR. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 44, 1898 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.026.   DOI
43 Lopes PE, van Hattum F, Pereira CMC, Nóvoa PJRO, Forero S, Hepp F, Pambaguian L. High CNT content composites with CNT Buckypaper and epoxy resin matrix: Impregnation behaviour composite production and characterization. Compos Struct, 92, 1291(2010). http://dx.doi.org/10.1016/j.compstruct.2009.11.003.   DOI
44 de Andrade JE, Machado R, Macêdo MA. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering. Polímeros, 23, 19 (2013). http://dx.doi.org/10.1590/s0104-14282013005000009.   DOI