Browse > Article
http://dx.doi.org/10.5714/CL.2016.18.076

Pore structure control of activated carbon fiber for CO gas sensor electrode  

Bai, Byong Chol (Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT))
Bae, Tae-Sung (Korea Basic Science Institute (KBSI))
Publication Information
Carbon letters / v.18, no., 2016 , pp. 76-79 More about this Journal
Keywords
gas sensor; activated carbon; carbon fiber; chemical activation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vetter S, Haffer S, Wagner T, Tiemann M. Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior. Sens Actuators B: Chem, 206, 133 (2015). http://dx.doi.org/10.1016/j.snb.2014.09.025.   DOI
2 Kang SC, Im JS, Lee SH, Bae TS, Lee YS. High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber. Colloids Surf A: Physicochem Eng Asp, 384, 297 (2011). http://dx.doi.org/10.1016/j.colsurfa.2011.04.001.   DOI
3 Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS. Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor. Carbon, 49, 2235 (2011). http://dx.doi.org/10.1016/j.carbon.2011.01.054.   DOI
4 Sazama P, Wichterlova B, Dedecek J, Tvaruzkova Z, Musilova Z, Palumbo L, Sklenak S, Gonsiorova O. FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous Mesoporous Mater, 143, 87 (2011). http://dx.doi.org/10.1016/j.micromeso.2011.02.013.   DOI
5 Do DD, Tan SLJ, Zeng Y, Fan C, Nguyen VT, Horikawa T, Nicholson D. The interplay between molecular layering and clustering in adsorption of gases on graphitized thermal carbon black: spill-over phenomenon and the important role of strong sites. J Colloid Interface Sci, 446, 98 (2015). http://dx.doi.org/10.1016/j.jcis.2015.01.028.   DOI
6 Kobayashi N, Enoki T, Ishii C, Kaneko K, Endo M. Gas adsorption effects on structural and electrical properties of activated carbon fibers. J Chem Phys, 109, 1983 (1998). http://dx.doi.org/10.1063/1.476774.   DOI
7 Chiu HS, Lin PI, Wu HC, Hsieh WH, Chen CD, Chen YT. Electron hopping conduction in highly disordered carbon coils. Carbon, 47, 1761 (2009). http://dx.doi.org/10.1016/j.carbon.2009.03.002.   DOI
8 Sun Z, Yu Y, Pang S, Du D. Manganese-modified activated carbon fiber (Mn-ACF): novel efficient adsorbent for Arsenic. Appl Surf Sci, 284, 100 (2013). http://dx.doi.org/10.1016/j.apsusc.2013.07.031.   DOI
9 Zheng J, Zhao Q, Ye Z. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl Surf Sci, 299, 86 (2014). http://dx.doi.org/10.1016/j.apsusc.2014.01.190.   DOI
10 Bai BC, Kim EA, Lee CW, Lee YS, Im JS. Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption. Appl Surf Sci, 353, 158 (2015). http://dx.doi.org/10.1016/j.apsusc.2015.06.046.   DOI
11 Mirzaei A, Park S, Sun GJ, Kheel H, Lee C. CO gas sensing properties of In4Sn3O12 and TeO2 composite nanoparticle sensors. J Hazard Mater, 305, 130 (2016). http://dx.doi.org/10.1016/j.jhazmat.2015.11.044.   DOI
12 Goto T, Itoh T, Akamatsu T, Izu N, Shin W. CO sensing properties of Au/SnO2-Co3O4 catalysts on a micro thermoelectric gas sensor. Sens Actuators B: Chem, 223, 774 (2016). http://dx.doi.org/10.1016/j.snb.2015.09.146.   DOI
13 Cuong ND, Khieu DQ, Hoa, TT, Quang DT, Viet PH, Lam TD, Hoa ND, Hieu NV. Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor. Mater Res Bull, 68, 302 (2015). http://dx.doi.org/10.1016/j.materresbull.2015.03.069.   DOI