Browse > Article
http://dx.doi.org/10.5714/CL.2016.18.071

Comparative study on various sponges as substrates for reduced graphene oxide-based supercapacitor  

Choi, Dongcheol (Department of Chemistry, Incheon National University)
Kim, Kyuwon (Department of Chemistry, Incheon National University)
Publication Information
Carbon letters / v.18, no., 2016 , pp. 71-75 More about this Journal
Keywords
supercapacitor; reduced graphene oxide; sponge; polyvinyl alcohol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lin Z, Liu Y, Yao Y, Hildreth OJ, Li Z, Moon K, Wong CP. Superior capacitance of functionalized graphene. J Phys Chem C, 115, 7120 (2011). http://dx.doi.org/10.1021/jp2007073.   DOI
2 Hu L, Chen W, Xie X, Liu N, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. Acs Nano, 5, 8904 (2011). http://dx.doi.org/10.1021/nn203085j.   DOI
3 Wu Q, Xu Y, Yao Z, Liu A, Shi G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. Acs Nano, 4, 1963 (2010). http://dx.doi.org/10.1021/nn1000035.   DOI
4 Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 25, 5957 (2009). http://dx.doi.org/10.1021/la804216z.   DOI
5 Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater, 20, 4490 (2008). http://dx.doi.org/10.1002/adma.200801306.   DOI
6 Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J, 15, 6116 (2009). http://dx.doi.org/10.1002/chem.200900596.   DOI
7 Meng Y, Wang K, Zhang Y, Wei Z. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv Mater, 25, 6985 (2013). http://dx.doi.org/10.1002/adma.201303529.   DOI
8 Wang H, Hao Q, Yang X, Lu L, Wang X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2, 2164 (2010). http://dx.doi.org/10.1039/c0nr00224k.   DOI
9 Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W. Supercapacitor performances of thermally reduced graphene oxide. J Power Sources, 198, 423 (2012). http://dx.doi.org/10.1016/j.jpowsour.2011.09.074.   DOI
10 Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta, 45, 2483 (2000). http://dx.doi.org/10.1016/s0013-4686(00)00354-6.   DOI
11 Chu A, Braatz P. Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. initial characterization. J Power Sources, 112, 236 (2002). http://dx.doi.org/10.1016/s0378-7753(02)00364-6.   DOI
12 Burke A. Ultracapacitors: why, how, and where is the technology. J Power Sources, 91, 37 (2000). http://dx.doi.org/10.1016/s0378-7753(00)00485-7.   DOI
13 Halper MS, Ellenbogen JC. Supercapacitors: A Brief Overview, The MITRE Corporation, McLean, VA (2006).
14 Conway BE. Transition from "Supercapacitor" to "Battery" Behavior in Electrochemical Energy Storage. J Electrochem Soc, 138, 1539 (1991). http://dx.doi.org/10.1149/1.2085829.   DOI
15 Conway BE, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources, 66, 1 (1997). http://dx.doi.org/10.1016/s0378-7753(96)02474-3.   DOI
16 Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y.   DOI
17 Pumera M. Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec, 9, 211 (2009). http://dx.doi.org/10.1002/tcr.200900008.   DOI
18 Lv W, Xia Z, Wu S, Tao Y, Jin FM, Li B, Du H, Zhu ZP, Yang QH, Kang F. Conductive graphene-based macroscopic membrane self-assembled at a liquid-air interface. J Mater Chem, 21, 3359 (2011). http://dx.doi.org/10.1039/c0jm02852e.   DOI
19 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI
20 Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.   DOI
21 Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol, 4, 217 (2009). http://dx.doi.org/10.1038/nnano.2009.58.   DOI
22 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034.   DOI
23 Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun, 1, 73 (2010). http://dx.doi.org/10.1038/ncomms1067.
24 Ge J, Yao HB, Hu W, Yu XF, Yan YX, Mao LB, Li HH, Li SS, Yu SH. Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy, 2, 505 (2013). http://dx.doi.org/10.1016/j.nanoen.2012.12.002.   DOI
25 Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN. High-performance nanostructured supercapacitors on a sponge. Nano Lett, 11, 5165 (2011). http://dx.doi.org/10.1021/nl2023433.   DOI
26 Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv Funct Mater, 24, 2489 (2014). http://dx.doi.org/10.1002/adfm.201303282.   DOI