Browse > Article
http://dx.doi.org/10.5714/CL.2016.18.037

Atmospheric chemical vapor deposition of graphene on molybdenum foil at different growth temperatures  

Naghdi, Samira (Department of Physics, Bu-Ali Sina University)
Rhee, Kyong Yop (Department of Mechanical Engineering, College of Engineering, Kyung Hee University)
Kim, Man Tae (Airworthiness Certification Team, Defense Agency for Technology and Quality)
Jaleh, Babak (Department of Physics, Bu-Ali Sina University)
Park, Soo Jin (Department of Chemistry, College of Natural Science, Inha University)
Publication Information
Carbon letters / v.18, no., 2016 , pp. 37-42 More about this Journal
Abstract
Graphene was grown on molybdenum (Mo) foil by a chemical vapor deposition method at different growth temperatures (1000℃, 1100℃, and 1200℃). The properties of graphene were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and Raman spectroscopy. The results showed that the quality of the deposited graphene layer was affected by the growth temperature. XRD results showed the presence of a carbide phase on the Mo surface; the presence of carbide was more intense at 1200℃. Additionally, a higher I2D/IG ratio (0.418) was observed at 1200℃, which implies that there are fewer graphene layers at this temperature. The lowest ID/IG ratio (0.908) for the graphene layers was obtained at 1200℃, suggesting that graphene had fewer defects at this temperature. The size of the graphene domains was also calculated. We found that by increasing the growth temperature, the graphene domain size also increased.
Keywords
chemical vapor deposition; Raman; graphene; molybdenum; growth temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y. Electrical and mechanical properties of antistatic PVC films containing multilayer graphene. Compos Part B: Eng, 79, 444 (2015). http://dx.doi.org/10.1016/j.compositesb.2015.05.011.   DOI
2 Naghdi S, Rhee KY, Jaleh B, Park SJ. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea. Appl Surf Sci, 364, 686 (2016). http://dx.doi.org/10.1016/j.apsusc.2015.12.225.   DOI
3 Gan L, Shang S, Yuen CWM, Jiang SX, Luo NM. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos Part B: Eng, 69, 237 (2015). http://dx.doi.org/10.1016/j.compositesb.2014.10.019.   DOI
4 Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon, 49, 4204 (2011). http://dx.doi.org/10.1016/j.carbon.2011.05.054.   DOI
5 Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. J Mater Chem, 21, 3324 (2011). http://dx.doi.org/10.1039/C0JM02126A.   DOI
6 Mišković-Stanković V, Jevremović I, Jung I, Rhee KY. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon, 75, 335 (2014). http://dx.doi.org/10.1016/j.carbon.2014.04.012.   DOI
7 Cushing GW, Johánek V, Navin JK, Harrison I. Graphene growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J Phys Chem C, 119, 4759 (2015). http://dx.doi.org/10.1021/jp508177k.   DOI
8 Nayak PK, Hsu CJ, Wang SC, Sung JC, Huang JL. Graphene coated Ni films: a protective coating. Thin Solid Films, 529, 312 (2013). http://dx.doi.org/10.1016/j.tsf.2012.03.067.   DOI
9 An X, Liu F, Jung YJ, Kar S. Large-area synthesis of graphene on palladium and their Raman spectroscopy. J Phys Chem C, 116, 16412 (2012). http://dx.doi.org/10.1021/jp301196u.   DOI
10 Tonnoir C, Kimouche A, Coraux J, Magaud L, Delsol B, Gilles B, Chapelier C. Induced superconductivity in graphene grown on rhenium. Phys Rev Lett, 111, 246805 (2013). http://dx.doi.org/10.1103/physrevlett.111.246805.   DOI
11 Sutter PW, Flege JI, Sutter EA. Epitaxial graphene on ruthenium. Nat Mater, 7, 406 (2008). http://dx.doi.org/10.1038/nmat2166.   DOI
12 Vo-Van C, Kimouche A, Reserbat-Plantey A, Fruchart O, Bayle-Guillemaud P, Bendiab N, Coraux J. Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire. Appl Phys Lett, 98, 181903 (2011). http://dx.doi.org/10.1063/1.3585126.   DOI
13 Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda KI, Mizuno S. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano, 4, 7407 (2010). http://dx.doi.org/10.1021/nn102519b.   DOI
14 Gotterbarm K, Zhao W, Höfert O, Gleichweit C, Papp C, Steinrück HP. Growth and oxidation of graphene on Rh(111). Phys Chem Chem Phys, 15, 19625 (2013). http://dx.doi.org/10.1039/c3cp53802h.   DOI
15 Wu Y, Yu G, Wang H, Wang B, Chen Z, Zhang Y, Wang B, Shi X, Xie X, Jin Z, Liu X. Synthesis of large-area graphene on molybdenum foils by chemical vapor deposition. Carbon, 50, 5226 (2012). http://dx.doi.org/10.1016/j.carbon.2012.07.007.   DOI
16 Zou Z, Song X, Chen K, Ji Q, Zhang Y, Liu Z. Uniform single-layer graphene growth on recyclable tungsten foils. Nano Res, 8, 592 (2015). http://dx.doi.org/10.1007/s12274-015-0727-9.   DOI
17 Park YS, Moon HS, Huh M, Kim BJ, Kuk YS, Kang SJ, Lee SH, An KH. Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition. Carbon Lett, 14, 99 (2013). http://dx.doi.org/10.5714/cl.2013.14.2.099.   DOI
18 Jodin L, Dupuis AC, Rouvière E, Reiss P. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. J Phys Chem B, 110, 7328 (2006). http://dx.doi.org/10.1021/jp056793z.   DOI
19 Grachova Y, Vollebregt S, Lacaita AL, Sarro PM. High quality wafer-scale CVD graphene on molybdenum thin film for sensing application. Procedia Eng, 87, 1501 (2014). http://dx.doi.org/10.1016/j.proeng.2014.11.583.   DOI
20 Hsieh YP, Hofmann M, Kong J. Promoter-assisted chemical vapor deposition of graphene. Carbon, 67, 417 (2014). http://dx.doi.org/10.1016/j.carbon.2013.10.013.   DOI
21 Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P. Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C, 117, 18919 (2013). http://dx.doi.org/10.1021/jp4047648.   DOI
22 Li Z, Wu P, Wang C, Fan X, Zhang W, Zhai X, Zeng C, Li Z, Yang J, Hou J. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano, 5, 3385 (2011). http://dx.doi.org/10.1021/nn200854p.   DOI
23 Son YR, Rhee KY, Park SJ. Influence of reduced graphene oxide on mechanical behaviors of sodium carboxymethyl cellulose. Compos Part B: Eng, 83, 36 (2015). http://dx.doi.org/10.1016/j.compositesb.2015.08.031.   DOI
24 Li X, Magnuson CW, Venugopal A, An J, Suk JW, Han B, Borysiak M, Cai W, Velamakanni A, Zhu Y, Fu L, Vogel EM, Voelkl E, Colombo L, Ruoff RS. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett, 10, 4328 (2010). http://dx.doi.org/10.1021/nl101629g.   DOI
25 Chen Y, Zhang H, Zhang J, Ma J, Ye H, Qian G, Ye Y, Zhong S. Facile synthesis and thermal stability of nanocrystalline molybdenum carbide. Mater Sci Appl, 2, 1313 (2011). http://dx.doi.org/10.4236/msa.2011.29178.   DOI
26 Jourdain V, Bichara C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon, 58, 2 (2013). http://dx.doi.org/10.1016/j.carbon.2013.02.046.   DOI
27 Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett, 88, 163106 (2006). http://dx.doi.org/10.1063/1.2196057.   DOI