Browse > Article
http://dx.doi.org/10.5714/CL.2016.18.011

Monolithic porous carbon materials prepared from polyurethane foam templates  

Pires, Joao (Centro de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa)
Janeiro, Andre (Centro de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa)
Oliveira, Filipe J. (Departamento de Engenharia de Materiais e Ceramica (DEMaC) and CICECO-Aveiro Institute of Materials, Universidade de Aveiro)
Bastos, Alexandre C. (Departamento de Engenharia de Materiais e Ceramica (DEMaC) and CICECO-Aveiro Institute of Materials, Universidade de Aveiro)
Pinto, Moises L. (CERENA, Departamento de Engenharia Quimica, Instituto Superior Tecnico, Universidade de Lisboa)
Publication Information
Carbon letters / v.18, no., 2016 , pp. 11-17 More about this Journal
Abstract
Monolithic carbon foams with hierarchical porosity were prepared from polyurethane templates and resol precursors. Mesoporosity was achieved through the use of soft templating with surfactant Pluronic F127, and macroporosity from the polyurethane foams was retained. Conditions to obtain high porosity materials were optimized. The best materials have high specific surface areas (380 and 582 m2 g-1, respectively) and high electrical conductivity, which make them good candidates for supports in sensors. These materials showed an almost linear dependence between the potential and the pH of aqueous solutions.
Keywords
carbon-foams; hierarchical porosity; monolithic-carbon; polyurethane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, London, 1999.
2 Cachaço AG, Afonso MD, Pinto ML. New applications for foam composites of polyurethane and recycled rubber. J Appl Polym Sci, 129, 2873 (2013). http://dx.doi.org/10.1002/app.38962.   DOI
3 Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webley PA, Zhao D. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun, (23), 2641 (2008). http://dx.doi.org/10.1039/b804716b.   DOI
4 Morales-Torres S, Maldonado-Hódar FJ, Pérez-Cadenas AF, Carrasco-Marín F. Structural Characterization of carbon xerogels: from film to monolith. Microporous Mesoporous Mater, 153, 24 (2012). http://dx.doi.org/10.1016/j.micromeso.2011.12.022.   DOI
5 Xia Y, Yang Z, Mokaya R. Templated nanoscale porous carbons. Nanoscale, 2, 639 (2010). http://dx.doi.org/10.1039/b9nr00207c.   DOI
6 Wu Z, Yang Y, Tu B, Webley PA, Zhao D. Adsorption of xylene isomers on ordered hexagonal mesoporous FDU-15 polymer and carbon materials. Adsorption, 15, 123 (2009). http://dx.doi.org/10.1007/s10450-009-9159-8.   DOI
7 Lee J, Yoon S, Hyeon T, Oh SM, Kim KB. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chem Commun, (21), 2177 (1999). http://dx.doi.org/10.1039/a906872d.   DOI
8 Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/ solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem, 57, 603 (1985). http://dx.doi.org/10.1351/pac198557040603.   DOI
9 Kwiatkowski JF. Activated Carbon: Classifications, Properties and Applications (Chemical Engineering Methods and Technology), Nova Science Publishers Inc., New York, NY (2012).
10 Liang C, Li Z, Dai S. Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed, 47, 3696 (2008). http://dx.doi.org/10.1002/anie.200702046.   DOI
11 Stein A, Wang Z, Fierke MA. Functionalization of porous carbon materials with designed pore architecture. Adv Mater, 21, 265 (2009). http://dx.doi.org/10.1002/adma.200801492.   DOI
12 Zhao XS, Su F, Yan Q, Guo W, Bao XY, Lv L, Zhou Z. Templating methods for preparation of porous structures. J Mater Chem, 16, 637 (2006). http://dx.doi.org/10.1039/b513060c.   DOI
13 Xue C, Tu B, Zhao D. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic-organic self-assembly. Nano Res, 2, 242 (2009). http://dx.doi.org/10.1007/s12274-009-9022-y.   DOI
14 Meng Y, Gu D, Zhang F, Shi Y, Cheng L, Feng D, Wu Z, Chen Z, Wan Y, Stein A, Zhao D. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chem Mater, 18, 4447 (2006). http://dx.doi.org/10.1021/cm060921u.   DOI
15 Saini VK, Pinto ML, Pires J. Synthesis and adsorption properties of micro/mesoporous carbon-foams prepared from foam-shaped sacrificial templates. Mater Chem Phys, 138, 877 (2013). http://dx.doi.org/10.1016/j.matchemphys.2012.12.077.   DOI
16 Pires J, Carvalho A, Pinto M, Rocha J. Characterization of Y zeolites dealuminated by solid-state reaction with ammonium hexafluorosilicate. J Porous Mater, 13, 107 (2006). http://dx.doi.org/10.1007/s10934-006-7005-x.   DOI
17 Noh JS, Schwarz JA. Estimation of the point of zero charge of simple oxides by mass titration. J Colloid Interface Sci, 130, 157 (1989). http://dx.doi.org/10.1016/0021-9797(89)90086-6.   DOI