Browse > Article
http://dx.doi.org/10.5714/CL.2016.18.001

A review: role of interfacial adhesion between carbon blacks and elastomeric materials  

Kang, Min-Joo (Department of Chemistry, Inha University)
Heo, Young-Jung (Department of Chemistry, Inha University)
Jin, Fan-Long (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.18, no., 2016 , pp. 1-10 More about this Journal
Abstract
Carbon blacks (CBs) have been widely used as reinforcing materials in advanced rubber composites. The mechanical properties of CB-reinforced rubber composites are mostly controlled by the extent of interfacial adhesion between the CBs and the rubber. Surface treatments are generally performed on CBs to introduce chemical functional groups on its surface. In this study, we review the effects of various surface treatment methods for CBs. In addition, the preparation and properties of CB-reinforced rubber composites are discussed.
Keywords
rubber; carbon blacks; surface treatments; interfacial adhesion;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Hassan HH, Ateia E, Darwish NA, Halim SF, El-Aziz AKA. Effect of filler concentration on the physico-mechanical properties of super abrasion furnace black and silica loaded styrene butadiene rubber. Mater Des, 34, 533 (2012). http://dx.doi.org/10.1016/j.matdes.2011.05.005.   DOI
2 Domenech SC, Bendo L, Mattos DJS, Borges NG Jr, Zucolotto V, Mattoso LHC, Soldi V. Elastomeric composites based on ethylene-propylene-diene monomer rubber and conducting polymer-modified carbon black. Polym Compos, 30, 897 (2009). http://dx.doi.org/10.1002/pc.20630.   DOI
3 Mao Y, Wen S, Chen Y, Zhang F, Panine P, Chan TW, Zhang L, Liang Y, Liu L. High performance graphene oxide based rubber composites. Sci Rep, 3, 2508 (2013). http://dx.doi.org/10.1038/srep02508.   DOI
4 Salaeh S, Nakason C. Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds. Polym Compos, 33, 489 (2012). http://dx.doi.org/10.1002/pc.22169.   DOI
5 Park SJ, Cho KS. Filler-elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/ rubber composites. J Colloid Interface Sci, 267, 86 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00132-2.   DOI
6 Park SJ, Seo MK. Interfacial characteristics of polymeric composite materials. Polymer (Korea), 29, 221 (2005).
7 Park SJ, Cho KS, Zaborski M, Slusarski L. Filler-elastomer interaction. 5. Effect of silane surface treatment on interfacial adhesion of silica/rubber composites. Polymer (Korea), 26, 445 (2002).
8 Sung JH, Ryu SR, Lee DJ. Effects of strain-induced crystallization on mechanical properties of elastomeric composites containing carbon nanotubes and carbon black. Trans Korean Soc Mech Eng A, 35, 999 (2011). http://dx.doi.org/10.3795/KSME-A.2011.35.9.999.   DOI
9 Peddini SK, Bosnyak CP, Henderson NM, Ellison CJ, Paul DR. Nanocomposites from styrene-butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: mechanical properties. Polymer, 56, 443 (2015). http://dx.doi.org/10.1016/j.polymer.2014.11.006.   DOI
10 Ismail H, Omar NF, Othman N. Effect of carbon black loading on curing characteristics and mechanical properties of waste tyre dust/carbon black hybrid filler filled natural rubber compounds. J Appl Polym Sci, 121, 1143 (2011). http://dx.doi.org/10.1002/app.33511.   DOI
11 Fröhlich J, Niedermeier W, Luginsland HD. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos Part A: Appl Sci Manuf, 36, 449 (2005). http://dx.doi. org/10.1016/j.compositesa.2004.10.004.   DOI
12 Park SJ, Kim JS. Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: N2 plasma environment. J Colloid Interface Sci, 244, 336 (2001). http://dx.doi.org/10.1006/jcis.2001.7920.   DOI
13 Thomas PS, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S. Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci, 47, 3344 (2012). http://dx.doi.org/10.1007/s10853-011-6174-4.   DOI
14 Park SJ, Kim JS. Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system. J Colloid Interface Sci, 232, 311 (2000). http://dx.doi.org/10.1006/jcis.2000.7160.   DOI
15 Leblanc JL. Simplified modeling calculations to enlighten the mechanical properties (modulus) of carbon black filled diene rubber compounds. J Appl Polym Sci, 122, 599 (2011). http://dx.doi.org/10.1002/app.34174.   DOI
16 Kim JK. Conductive carbon black filled composite (I): the effect of carbon block on the conductivity. Elastomers Compos, 33, 355 (1998).
17 Omnès B, Thuillier S, Pilvin P, Grohens Y, Gillet S. Effective properties of carbon black filled natural rubber: experiments and modeling. Compos Part A: Appl Sci Manuf, 39, 1141 (2008). http://dx.doi.org/10.1016/j.compositesa.2008.04.003.   DOI
18 Tzounis L, Debnath S, Rooj S, Fischer D, Mäder E, Das A, Stamm M, Heinrich G. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers. Mater Des, 58, 1 (2014). http://dx.doi.org/10.1016/j.matdes.2014.01.071.   DOI
19 Wang J, Vincent J, Quarles CA. Review of positron annihilation spectroscopy studies of rubber with carbon black filler. Nucl Instrum Methods Phys Res B, 241, 271 (2005). http://dx.doi.org/10.1016/j.nimb.2005.07.033.   DOI
20 Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS. Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci, 52, 56 (2011). http://dx.doi.org/10.1016/j.clay.2011.01.029.   DOI
21 Junkong P, Kueseng P, Wirasate S, Huynh C, Rattanasom N. Cut growth and abrasion behaviour, and morphology of natural rubber filled with MWCNT and MWCNT/carbon black. Polym Test, 41, 172 (2015). http://dx.doi.org/10.1016/j.polymertesting.2014.11.009.   DOI
22 Matos CF, Galembeck F, Zarbin AJG. Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon, 78, 469 (2014). http://dx.doi.org/10.1016/j.carbon.2014.07.028.   DOI
23 Takeuchi K, Noguchi T, Ueki H, Niihara KI, Sugiura T, Inukai S, Fujishige M. Improvement in characteristics of natural rubber nanocomposite by surface modification of multi-walled carbon nanotubes. J Phys Chem Solids, 80, 84 (2015). http://dx.doi.org/10.1016/j.jpcs.2014.11.009.   DOI
24 Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D. Rational design of graphene surface chemistry for high-performance rubber/graphene composites. Macromolecules, 47, 8663 (2014). http://dx.doi.org/10.1021/ma502201e.   DOI
25 Jo JO, Saha P, Kim NG, Ho CC, Kim JK. Development of nanocomposite with epoxidized natural rubber and functionalized multiwalled carbon nanotubes for enhanced thermal conductivity and gas barrier property. Mater Des, 83, 777 (2015). http://dx.doi.org/10.1016/j.matdes.2015.06.045.   DOI
26 Nakaramontri Y, Kummerlöwe C, Nakason C, Vennemann N. The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites. Polym Compos, 36, 2113 (2015). http://dx.doi.org/10.1002/pc.23122.   DOI
27 Kim SY, Baek SJ, Youn JR. New hybrid method for simultaneous improvement of tensile and impact properties of carbon fiber reinforced composites. Carbon, 49, 5329 (2011). http://dx.doi.org/10.1016/j.carbon.2011.07.055.   DOI
28 Laoui T. Mechanical and thermal properties of styrene butadiene rubber-functionalized carbon nanotubes nanocomposites. Fullerenes Nanotubes Carbon Nanostruct, 21, 89 (2013). http://dx.doi.org/10.1080/1536383X.2011.574324.   DOI
29 Lee SO, Rhee KY, Park SJ. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites. J Ind Eng Chem, 32, 153 (2015). http://dx.doi.org/10.1016/j.jiec.2015.08.009.   DOI
30 Jeong JM, Rhee KY, Park SJ. Effect of chemical treatments on lithium recovery process of activated carbons. J Ind Eng Chem, 27, 329 (2015). http://dx.doi.org/10.1016/j.jiec.2015.01.009.   DOI
31 Lee SY, Kim BJ, Park SJ. Influence of H2O2 treatment on electrochemical activity of mesoporous carbon-supported Pt-Ru catalysts. Energy, 66, 70 (2014). http://dx.doi.org/10.1016/j.energy.2014.01.041.   DOI
32 Im JS, Kwon O, Kim YH, Park SJ, Lee YS. The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater, 115, 514 (2008). http://dx.doi.org/10.1016/j.micromeso.2008.02.027.   DOI
33 Jovanović V, Samaržija-Jovanović S, Budinski-Simendić J, Marković G, Marinović-Cincović M. Composites based on carbon black reinforced NBR/EPDM rubber blends. Compos Part B: Eng, 45, 333 (2013). http://dx.doi.org/10.1016/j.compositesb.2012.05.020.   DOI
34 Araby S, Meng Q, Zhang L, Zaman I, Majewski P, Ma J. Elastomeric composites based on carbon nanomaterials. Nanotechnology, 26, 112001 (2015). http://dx.doi.org/10.1088/0957-4484/26/11/112001.   DOI
35 Griffini G, Suriano R, Turri S. Correlating mechanical and electrical properties of filler-loaded polyurethane fluoroelastomers: the influence of carbon black. Polym Eng Sci, 52, 2543 (2012). http://dx.doi.org/10.1002/pen.23213.   DOI
36 Korai Y, Wang YG, Yoon SH, Ishida S, Mochida I, Nakagawa Y, Matsumura Y. Effects of carbon black addition on preparation of meso-carbon microbeads. Carbon, 35, 875 (1997). http://dx.doi.org/10.1016/S0008-6223(97)00036-5.   DOI
37 Kanno K, Fernandez JJ, Fortin F, Korai Y, Mochida I. Modifications to carbonization of mesophase pitch by addition of carbon blacks. Carbon, 35, 1627 (1997). http://dx.doi.org/10.1016/S0008-6223(97)00123-1.   DOI
38 Leblanc JL. Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci, 27, 627 (2002). http://dx.doi.org/10.1016/S0079-6700(01)00040-5.   DOI
39 Park SJ, Cho KS, Ryu SK. Filler-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites. Carbon, 41, 1437 (2003). http://dx.doi.org/10.1016/s0008-6223(03)00088-5.   DOI
40 Park SJ, Kim JS. Modifications produced by electrochemical treatments on carbon blacks: microstructures and mechanical interfacial properties. Carbon, 39, 2011 (2001). http://dx.doi.org/10.1016/S0008-6223(01)00015-X.   DOI
41 Ghosh AK, Maiti S, Adhikari B, Ray GS, Mustafi SK. Effect of modified carbon black on the properties of natural rubber vulcanizate. J Appl Polym Sci, 66, 683 (1997). http://dx.doi.org/10.1002/(SICI)1097-4628(19971024)66:4<683::AID-APP8>3.0.CO;2-O.   DOI
42 Bandyopadhyay S, De PP, Tripathy DK, De SK. Influence of surface oxidation of carbon black on its interaction with nitrile rubbers. Polymer, 37, 353 (1996). http://dx.doi.org/10.1016/0032-3861(96)81110-4.   DOI
43 Jiang HX, Ni QQ, Natsuki T. Design and evaluation of the interface between carbon nanotubes and natural rubber. Polym Compos, 32, 236 (2011). http://dx.doi.org/10.1002/pc.21040.   DOI
44 Serizawa H, Nakamura T, Ito M, Tanaka K, Nomura A. Effects of oxidation of carbon black surface on the properties of carbon black-natural rubber systems. Polym J, 15, 201 (1983). http://dx.doi.org/10.1295/polymj.15.201.   DOI
45 Ko KR, Ryu SK, Park SJ. Effect of ozone treatment on Cr (VI) and Cu (II) adsorption behaviors of activated carbon fibers. Carbon, 42, 1864 (2004). http://dx.doi.org/10.1016/j.carbon.2004.02.033.   DOI
46 Fowkes FM. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J Phys Chem, 66, 382 (1962). http://dx.doi.org/10.1021/j100808a524.   DOI
47 Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). http://dx.doi.org/10.1016/j.jcis.2005.01.043.   DOI
48 Jin FL, Park SJ. Preparation and characterization of carbon fiberreinforced thermosetting composites: a review. Carbon Lett, 16, 67 (2015). http://dx.doi.org/10.5714/CL.2015.16.2.067.   DOI
49 Kim S, Park SJ. Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters. Electrochim Acta, 52, 3013 (2007). http://dx.doi.org/10.1016/j.electacta.2006.09.060.   DOI
50 Park SJ, Brendle M. London dispersive component of the surface free energy and surface enthalpy. J Colloid Interface Sci, 188, 336 (1997). http://dx.doi.org/10.1006/jcis.1997.4763.   DOI
51 Park SJ, Donnet JB. Anodic surface treatment on carbon fibers: determination of acid-base interaction parameter between two unidentical solid surfaces in a composite system. J Colloid Interface Sci, 206, 29 (1998). http://dx.doi.org/10.1006/jcis.1998.5672.   DOI
52 Kim S, Park SJ. Effects of chemical treatment of carbon supports on electrochemical behaviors for platinum catalysts of fuel cells. J Power Sources, 159, 42 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.041.   DOI
53 Park SJ, Kim JS, Nah CW. Filler-elastomer interactions. 1. Roles of modified carbon black surfaces to enhance mechanical properties of carbon black/rubber vulcanizates. Elastomers Compos, 35, 98 (2000).
54 Park SJ, Kim JS, Lee JR, Shin CH, Nah CW. Chemical surface treatment of carbon black to enhance interfacial adhesion between elastomer and carbon black. Elastomers Compos, 34, 222 (1999).
55 Park SJ, Kim JS. Filler-elastomer interactions. 2. Cure behaviors and mechanical interfacial properties of carbon black/rubber composites. Elastomers Compos, 35, 122 (2000).
56 Park SJ, Seo MK, Nah C. Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings. J Colloid Interface Sci, 291, 229 (2005). http://dx.doi.org/10.1016/j.jcis.2005.04.103.   DOI
57 Park SJ, Kang JY, Hong SK. Effect of acid-base characteristics of carbon black surfaces on mechanical behaviors of EPDM matrix composites. Polymer (Korea), 29, 151 (2005).
58 Kim KY, Rhyoo HY, Cho SJ, Yoon KE, Yang SI. Oxidation and surface functional group analyses under ozone treatment of carbon black. Elastomers Compos, 40, 188 (2005).
59 Park SJ, Cho KS, Zaborski M, Slusarski L. Filler-elastomer interactions. 10. Ozone treatment on interfacial adhesion of carbon Blacks/NBR compounds. Elastomers Compos, 38, 139 (2003).
60 Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng: A, 408, 269 (2005). http://dx.doi.org/10.1016/j.msea.2005.08.129.   DOI
61 Park SJ, Cho KS, Zaborski M, Slusarski L. Filler-elastomer interactions. 6. Influence of oxygen plasma treatment on surface properties of carbon black. Elastomers Compos, 37, 99 (2002).
62 Poikelispää M, Das A, Dierkes W, Vuorinen J. Synergistic effect of plasma-modified halloysite nanotubes and carbon black in natural rubber—butadiene rubber blend. J Appl Polym Sci, 127, 4688 (2013). http://dx.doi.org/10.1002/app.38080.   DOI
63 Kim DS, Dhand V, Rhee KY, Park SJ. Surface treatment and modification of graphene using organosilane and its thermal stability. Arch Metall Mater, 60, 1387 (2015). http://dx.doi.org/10.1515/amm-2015-0137.   DOI
64 Takada T, Nakahara M, Kumagai H, Sanada Y. Surface modification and characterization of carbon black with oxygen plasma. Carbon, 34, 1087 (1996). http://dx.doi.org/10.1016/0008-6223(96)00054-1.   DOI
65 Park SJ, Kim JS, Choi KE. Filler-elastomer interactions: 4. Effect of plasma treatment on surface properties of carbon blacks. Elastomers Compos, 36, 94 (2001).
66 Kim S, Cho MH, Lee JR, Park SJ. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs. J Power Sources, 159, 46 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.039.   DOI
67 Lee SY, Park SJ. Hydrogen adsorption of acid-treated multi-walled carbon nanotubes at low temperature. Bull Korean Chem Soc, 31, 1596 (2010). http://dx.doi.org/10.5012/bkcs.2010.31.6.1596.   DOI
68 Jin FL, Ma CJ, Park SJ. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng: A, 528, 8517 (2011). http://dx.doi.org/10.1016/j.msea.2011.08.054.   DOI
69 Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr (VI). J Colloid Interface Sci, 249, 458 (2002). http://dx.doi.org/10.1006/jcis.2002.8269.   DOI
70 Park SJ, Kim KD. Adsorption behaviors of CO2 and NH3 on chemically surface-treated activated carbons. J Colloid Interface Sci, 212, 186 (1999). http://dx.doi.org/10.1006/jcis.1998.6058.   DOI
71 Eatah AI, El-Nour KNA, Ghani AA, Hashem AA. Dielectric and conduction properties of aged and unaged butyl rubber-carbon black mixtures. Polym Degrad Stab, 22, 91 (1988). http://dx.doi.org/10.1016/0141-3910(88)90059-6.   DOI
72 Park SJ, Kim MH. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites. J Mater Sci, 35, 1901 (2000). http://dx.doi.org/10.1023/A:1004754100310.   DOI
73 Yuan LY, Chen CS, Shyu SS, Lai JY. Plasma surface treatment on carbon fibers. Part 1: Morphology and surface analysis of plasma etched fibers. Compos Sci Technol, 45, 1 (1992). http://dx.doi.org/10.1016/0266-3538(92)90116-K.   DOI
74 Tunnicliffe LB, Kadlcak J, Morris MD, Shi Y, Thomas AG, Bus-field JJC. Flocculation and viscoelastic behaviour in carbon black-filled natural rubber. Macromol Mater Eng, 299, 1474 (2014). http://dx.doi.org/10.1002/mame.201400117.   DOI
75 Abdel-Nour KN, Hanna FF, Abdel-Messieh SL. Dielectric properties of some synthetic rubber mixtures: Part II. Butyl rubber-carbon black mixtures. Polym Degrad Stab, 35, 121 (1992). http://dx.doi.org/10.1016/0141-3910(92)90102-B.   DOI
76 Eatah AI, Ghani AA, Hashem AA. Effect of concentration and temperature on the electrical conductivity in butyl rubber loaded with different types of carbon black. Polym Degrad Stab, 23, 9 (1989). http://dx.doi.org/10.1016/0141-3910(89)90064-5.   DOI
77 Gao S, Wang R, Fang B, Kang H, Mao L, Zhang L. Preparation and properties of a novel bio-based and non-crystalline engineering elastomer with high low-temperature and oil resistance. J Appl Polym Sci, 133, (2016). http://dx.doi.org/10.1002/app.42855.   DOI
78 Nah CW, Rhee JM, Kim WD, Kaang, S, Chang YW, Park SJ. Effects of chemical surface modification of carbon black on vulcanization and mechanical properties of styrene-butadiene rubber compound. Elastomers Compos, 36, 44 (2001).
79 Prukkaewkanjana K, Thanawan S, Amornsakchai T. High performance hybrid reinforcement of nitrile rubber using short pineapple leaf fiber and carbon black. Polym Test, 45, 76 (2015). http://dx.doi.org/10.1016/j.polymertesting.2015.05.004.   DOI
80 Hoshikawa Y, An B, Kashihara S, Ishii T, Ando M, Fujisawa S, Hayakawa K, Hamatani S, Yamada H, Kyotani T. Analysis of the interaction between rubber polymer and carbon black surfaces by efficient removal of physisorbed polymer from carbon-rubber composites. Carbon, 99, 148 (2016). http://dx.doi.org/10.1016/j.carbon.2015.12.003.   DOI
81 Karásek L, Meissner B, Asai S, Sumita M. Percolation concept: polymer-filler gel formation, electrical conductivity and dynamic electrical properties of carbon-black-filled rubbers. Polym J, 28, 121(1996). http://dx.doi.org/10.1295/polymj.28.121.   DOI
82 Kim YH, Wool RP. A theory of healing at a polymer-polymer interface. Macromolecules, 16, 1115 (1983). http://dx.doi.org/10.1021/ma00241a013.   DOI
83 Dai SY, Ao GY, Kim MS. Properties of carbon black/SBR rubber composites filled by surface modified carbon blacks. Carbon Lett, 8, 115 (2007). http://dx.doi.org/10.5714/CL.2007.8.2.115.   DOI
84 Jia W, Chen X. Effect of polymer-filler interactions on PTC behaviors of LDPE/EPDM blends filled with carbon blacks. J Appl Polym Sci, 66, 1885 (1997). http://dx.doi.org/10.1002/(sici)1097-4628(19971205)66:10<1885::aid-app5>3.0.co;2-j.   DOI
85 Peña JM, Allen NS, Edge M, Liauw CM, Hoon SR, Valange B, Cherry RI. Analysis of radical content on carbon black pigments by electron spin resonance: influence of functionality, thermal treatment and adsorption of acidic and basic probes. Polym Degrad Stab, 71, 153 (2000). http://dx.doi.org/10.1016/S0141-3910(00)00166-X.   DOI
86 Oakey J, Marr DWM, Schwartz KB, Wartenberg M. Influence of polyethylene and carbon black morphology on void formation in conductive composite materials: a SANS study. Macromolecules, 32, 5399 (1999). http://dx.doi.org/10.1021/ma990160z.   DOI
87 Léopoldés J, Barrès C, Leblanc JL, Georget P. Influence of filler-rubber interactions on the viscoelastic properties of carbon-blackfilled rubber compounds. J Appl Polym Sci, 91, 577 (2004). http://dx.doi.org/10.1002/app.13155.   DOI
88 de Torre LEC, Bottani EJ, Martínez-Alonso A, Cuesta A, García AB, Tascón JMD. Effects of oxygen plasma treatment on the surface of graphitized carbon black. Carbon, 36, 277 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00180-2.   DOI
89 Semaan ME, Nikiel L, Quarles CA. Doppler broadening spectroscopy of carbon black and carbon black-filled rubbers. Carbon, 39, 1379 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00264-5.   DOI
90 Akovali G, Ulkem I. Some performance characteristics of plasma surface modified carbon black in the (SBR) matrix. Polymer, 40, 7417 (1999). http://dx.doi.org/10.1016/S0032-3861(99)00094-4.   DOI
91 Ayala JA, Hess WM, Joyce GA, Kistler FD. Carbon-black-elastomer interaction II: effects of carbon black surface activity and loading. Rubber Chem Technol, 66, 772 (1993). http://dx.doi.org/10.5254/1.3538344.   DOI
92 Ayala JA, Hess WM, Dotson AO, Joyce GA. New studies on the surface properties of carbon blacks. Rubber Chem Technol, 63, 747 (1990). http://dx.doi.org/10.5254/1.3538287.   DOI
93 Ulfah IM, Fidyaningsih R, Rahayu S, Fitriani DA, Saputra DA, Winarto DA, Wisojodharmo LA. Influence of carbon black and silica filler on the rheological and mechanical properties of natural rubber compound. Procedia Chem, 16, 258 (2015). http://dx.doi.org/10.1016/j.proche.2015.12.053.   DOI
94 Hosler D, Burkett SL, Tarkanian MJ. Prehistoric polymers: rubber processing in ancient mesoamerica. Science, 284, 1988 (1999). http://dx.doi.org/10.1126/science.284.5422.1988.   DOI
95 Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 451, 977 (2008). http://dx.doi.org/10.1038/nature06669.   DOI
96 Gogotsi Y. High-temperature rubber made from carbon nanotubes. Science, 330, 1332 (2010). http://dx.doi.org/10.1126/science.1198982.   DOI
97 Woo CS, Park HS. Mechanical properties evaluation of natural and synthetic rubber. Elastomers Compos, 42, 32 (2007).
98 Thongsang S, Vorakhan W, Wimolmala E, Sombatsompop N. Dynamic mechanical analysis and tribological properties of NR vulcanizates with fly ash/precipitated silica hybrid filler. Tribol Int, 53, 134 (2012). http://dx.doi.org/10.1016/j.triboint.2012.04.006.   DOI
99 Hasirci N, Akovali G. Polymer coating for hemoperfusion over activated charcoal. J Biomed Mater Res, 20, 963 (1986). http://dx.doi.org/10.1002/jbm.820200711.   DOI
100 Mathew T, Datta RN, Dierkes WK, Talma AG, van Ooij WJ, Noordermeer JWM. Plasma polymerization surface modification of carbon black and its effect in elastomers. Macromol Mater Eng, 296, 42 (2011). http://dx.doi.org/10.1002/mame.201000252.   DOI
101 Ulkem I, Akovali G. Mechanical properties of surface modified bauxite filled SBR vulcanizates—I. Eur Polym J, 30, 567 (1994). http://dx.doi.org/10.1016/0014-3057(94)90062-0.   DOI