Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.4.255

Structural properties of reduced graphene oxides prepared using various reducing agents  

Lee, Byung Soo (Division of Advanced Materials Engineering, Chonbuk National University)
Lee, Yangjin (Division of Advanced Materials Engineering, Chonbuk National University)
Hwang, Jun Yeon (Institute of Advanced Composite Materials, Korea Institute of Science and Technology)
Choi, Young Chul (Nano-Electron Source Creative Research Center, Electronics and Telecommunications Research Institute)
Publication Information
Carbon letters / v.16, no.4, 2015 , pp. 255-259 More about this Journal
Keywords
reduced graphene oxide; crystallinity; oxygen concentration; reducing agent;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol, 3, 327 (2008). http://dx.doi.org/10.1038/nnano.2008.96.   DOI
2 Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 7, 3499 (2007). http://dx.doi.org/10.1021/nl072090c.   DOI
3 Nugrahenny ATU, Kim J, Kim SK, Peck DH, Yoon SH, Jung DH. Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization. Carbon Lett, 15, 38 (2014). http://dx.doi.org/10.5714/CL.2014.15.1.038.   DOI
4 Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872.   DOI
5 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.   DOI
6 Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater, 20, 3557 (2008). http://dx.doi.org/10.1002/adma.200800757.   DOI
7 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034.   DOI
8 Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B, 110, 22328 (2006). http://dx.doi.org/10.1021/jp0641132.   DOI
9 Some S, Kim Y, Yoon Y, Yoo H, Lee S, Park Y, Lee H. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci Rep, 3, 1929 (2013). http://dx.doi.org/10.1038/srep01929.   DOI
10 Reich S, Thomsen C. Raman spectroscopy of graphite. Philos Trans R Soc Lond A, 362, 2271 (2004). http://dx.doi.org/10.1098/rsta.2004.1454.   DOI
11 Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). http://dx.doi.org/10.1016/j.ssc.2007.03.052.   DOI
12 Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr., Ruoff RS. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 47, 145 (2009). http://dx.doi.org/10.1016/j.carbon.2008.09.045.   DOI
13 Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). http://dx.doi.org/10.1038/nature06016.   DOI
14 Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett, 8, 36 (2008). http://dx.doi.org/10.1021/nl071822y.   DOI
15 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.   DOI
16 Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). http://dx.doi.org/10.1039/b917103g.   DOI
17 Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 22, 3906 (2010). http://dx.doi.org/10.1002/adma.201001068.   DOI
18 Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mc-Govern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 3, 563 (2008). http://dx.doi.org/10.1038/nnano.2008.215.   DOI
19 Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M, Istrate OM, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O’Brien SE, McGuire EK, Sanchez BM, Duesberg GS, McEvoy N, Pennycook TJ, Downing C, Crossley A, Nicolosi V, Coleman JN. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater, 13, 624 (2014). http://dx.doi.org/10.1038/nmat3944.   DOI
20 Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.   DOI
21 Lee H, Ihm J, Cohen ML, Louie SG. Calcium-decorated graphene based nanostructures for hydrogen storage. Nano Lett, 10, 793 (2010). http://dx.doi.org/10.1021/nl902822s.   DOI
22 Zhang K, Zhang LL, Zhao XS, Wu J. Graphene/polyaniline nano-fiber composites as supercapacitor electrodes. Chem Mater, 22, 1392 (2010). http://dx.doi.org/10.1021/cm902876u.   DOI
23 Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652 (2007). http://dx.doi.org/10.1038/nmat1967.   DOI
24 Liu Y, Yu D, Zeng C, Miao Z, Dai L. Biocompatible graphene oxide-based glucose biosensors. Langmuir, 26, 6158 (2010). http://dx.doi.org/10.1021/la100886x.   DOI
25 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.   DOI
26 Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.   DOI
27 Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312 (2009). http://dx.doi.org/10.1126/science.1171245   DOI
28 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.   DOI
29 Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 9, 30 (2009). http://dx.doi.org/10.1021/nl801827v.   DOI
30 Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 8, 3498 (2008). http://dx.doi.org/10.1021/nl802558y.   DOI
31 Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL.Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol, 3, 654 (2008). http://dx.doi.org/10.1038/nnano.2008.268.   DOI
32 Hong AJ, Song EB, Yu HS, Allen MJ, Kim J, Fowler JD, Wassei JK, Park Y, Wang Y, Zou J, Kaner RB, Weiller BH, Wang KL. Graphene flash memory. ACS Nano, 5, 7812 (2011). http://dx.doi.org/10.1021/nn201809k.   DOI
33 Lee Y, Bae S, Jang H, Jang S, Zhu SE, Sim SH, Song YI, Hong BH, Ahn JH. Wafer-scale synthesis and transfer of graphene films. Nano Lett, 10, 490 (2010). http://dx.doi.org/10.1021/nl903272n.   DOI
34 Kim M, Kim Y, Baeck SH, Shim SE. Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites. Carbon Lett, 16, 34 (2015). http://dx.doi.org/10.5714/cl.2015.16.1.034.   DOI
35 Liu J, Yan H, Jiang K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram Int, 39, 6215 (2013). http://dx.doi.org/10.1016/j.ceramint.2013.01.041.   DOI