Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.4.247

Photocatalytic performance of graphene/Ag/TiO2 hybrid nanocomposites  

Lee, Jong-Ho (Department of Chemistry, Hanseo University)
Kim, In-Ki (Department of Materials Science, Hanseo University)
Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Youn, Jeong-Il (School of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University)
Oh, Han-Jun (Department of Materials Science, Hanseo University)
Publication Information
Carbon letters / v.16, no.4, 2015 , pp. 247-254 More about this Journal
Abstract
To improve photocatalytic efficiency, graphene/Ag/TiO2 nanotube catalyst was synthesized, and its surface characteristics and photocatalytic activity investigated. For deposition of Ag nanoparticles on the TiO2 nanotubes, a polymer compound containing CH3COOAg/poly(L-lactide) was utilized, and the silver particles were precipitated by reducing the silver ions during the annealing process. Graphene deposition on the Ag/TiO2 nanotubes was achieved using an electrophoretic deposition process. Based on the dye degradation results, it was determined that the photocatalytic efficiency was significantly affected by deposition of silver particles and graphene on the TiO2 catalyst. Highly efficient destruction of the dye was obtained with the new graphene/Ag/TiO2 nanotube photocatalyst. This may be attributed to a synergistic effect of the graphene and Ag nanoparticles on the TiO2 nanotubes.
Keywords
graphene; titania nanotube; photocatalyst; anodization; silver nanoparticles;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Szabó-Bárdos E, Czili H, Horváth A. Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J Photochem Photobiol A Chem, 154, 195 (2003). http://dx.doi.org/10.1016/s1010-6030(02)00330-1.   DOI
2 Sheng Z, Wu Z, Liu Y, Wang H. Gas-phase photocatalytic oxidation of NO over palladium modified TiO2 catalysts. Catal Commun, 9, 1941 (2008). http://dx.doi.org/10.1016/j.catcom.2008.03.022.   DOI
3 Devi LG, Reddy KM. Photocatalytic performance of silver TiO2: role of electronic energy levels. Appl Surf Sci, 257, 6821 (2011). http://dx.doi.org/10.1016/j.apsusc.2011.03.006.   DOI
4 Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc, 133, 10878 (2011). http://dx.doi.org/10.1021/ja2025454.   DOI
5 Lu MD, Yang SM. Synthesis of poly(3-hexylthiophene) grafted TiO2 nanotube composite. J Colloid Interface Sci, 333, 128 (2009). http://dx.doi.org/10.1016/j.jcis.2009.01.073.   DOI
6 Li H, Wu T, Cai B, Ma W, Sun Y, Gan S, Han D, Niu L. Efficiently photocatalytic reduction of carcinogenic contaminant Cr (VI) upon robust AgCl:Ag hollow nanocrystals. Appl Catal B Environ, 164, 344 (2015). http://dx.doi.org/10.1016/j.apcatb.2014.09.049.   DOI
7 Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater, 20, 3924 (2008). http://dx.doi.org/10.1002/adma.200800366.   DOI
8 Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev, 95, 735 (1995). http://dx.doi.org/10.1021/cr00035a013.   DOI
9 Ohtani B. Photocatalysis A to Z: what we know and what we do not know in a scientific sense. J Photochem Photobiol C Photochem Rev, 11, 157 (2010). http://dx.doi.org/10.1016/j.jphotochemrev.2011.02.001.   DOI
10 Henderson MA. A surface science perspective on TiO2 photocatalysis. Surf Sci Rep, 66, 185 (2011). http://dx.doi.org/10.1016/j.surfrep.2011.01.001.   DOI
11 Neumann B, Bogdanoff P, Tributsch H, Sakthivel S, Kisch H. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J Phys Chem B, 109, 16579 (2005). http://dx.doi.org/10.1021/jp051339g.   DOI
12 Cao M, Wang P, Ao Y, Wang C, Hou J, Qian J. Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable graphene–TiO2 composite photocatalyst: mechanism and intermediates analysis. Chem Eng J, 264, 113 (2015). http://dx.doi.org/10.1016/j.cej.2014.10.011.   DOI
13 Zhao J, Wu J, Yu F, Zhang X, Lan Z, Lin J. Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochim Acta, 96, 110 (2013). http://dx.doi.org/10.1016/j.electacta.2013.02.067.   DOI
14 Shu W, Liu Y, Peng Z, Chen K, Zhang C, Chen W. Synthesis and photovoltaic performance of reduced graphene oxide–TiO2 nanoparticles composites by solvothermal method. J Alloys Compd, 563, 229 (2013). http://dx.doi.org/10.1016/j.jallcom.2013.02.086.   DOI
15 Wang J, Zhou Y, Xiong B, Zhao Y, Huang X, Shao Z. Fast lithium-ion insertion of TiO2 nanotube and graphene composites. Electrochim Acta, 88, 847 (2013). http://dx.doi.org/10.1016/j.electacta.2012.10.010.   DOI
16 Li X, Zhang Y, Zhong Q, Li T, Li H, Huang J. Surface decoration with MnO2 nanoplatelets on graphene/TiO2 (B) hybrids for rechargeable lithium-ion batteries. Appl Surf Sci, 313, 877 (2014). http://dx.doi.org/10.1016/j.apsusc.2014.06.096.   DOI
17 Qianqian Z, Tang B, Guoxin H. High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: preparation and characterization. J Hazard Mater, 198, 78 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.10.012.   DOI
18 Grimes CA. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem, 17, 1451 (2007). http://dx.doi.org/10.1039/b701168g.   DOI
19 Nugrahenny ATU, Kim J, Kim SK, Peck DH, Yoon SH, Jung DH. Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization. Carbon Lett, 15, 38 (2014). http://dx.doi.org/10.5714/cl.2014.15.1.038.   DOI
20 Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology, 18, 365102 (2007). http://dx.doi.org/10.1088/0957-4484/18/36/365102.   DOI
21 Wang G, Wu F, Zhang X, Luo M, Deng N. Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions. J Hazard Mater, 133, 85 (2006). http://dx.doi.org/10.1016/j.jhazmat.2005.09.058.   DOI
22 Zhang X, Wu F, Wang Z, Guo Y, Deng N. Photocatalytic degradation of 4,4'-biphenol in TiO2 suspension in the presence of cyclodextrins: a trinity integrated mechanism. J Mol Catal A Chem, 301, 134 (2009). http://dx.doi.org/10.1016/j.molcata.2008.11.022.   DOI
23 Mohapatra SK, Misra M, Mahajan VK, Raja KS. Synthesis of Y-branched TiO2 nanotubes. Mater Lett, 62, 1772 (2008). http://dx.doi.org/10.1016/j.matlet.2007.09.083.   DOI
24 Devi LG, Nagaraj B, Rajashekhar KE. Synergistic effect of Ag deposition and nitrogen doping in TiO2 for the degradation of phenol under solar irradiation in presence of electron acceptor. Chem Eng J, 181-182, 259 (2012). http://dx.doi.org/10.1016/j.cej.2011.11.076.   DOI
25 Rupa AV, Manikandan D, Divakar D, Sivakumar T. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17. J Hazard Mater, 147, 906 (2007). http://dx.doi.org/10.1016/j.jhazmat.2007.01.107.   DOI
26 Lamberti A, Garino N, Sacco A, Bianco S, Chiodoni A, Gerbaldi C. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochim Acta, 151, 222 (2015). http://dx.doi.org/10.1016/j.electacta.2014.10.150.   DOI
27 Bae E, Choi W. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol, 37, 147 (2003). http://dx.doi.org/10.1021/es025617q.   DOI
28 Li Q, Hai P. Rapid microwave-assisted synthesis of silver decorated-reduced graphene oxide nanoparticles with enhanced photocatalytic activity under visible light. Mater Sci Semicond Process, 22, 16 (2014). http://dx.doi.org/10.1016/j.mssp.2014.02.013.   DOI
29 Ghavami M, Mohammadi R, Koohi M, Kassaee MZ. Visible light photocatalytic activity of reduced graphene oxide synergistically enhanced by successive inclusion of γ-Fe2O3, TiO2, and Ag nanoparticles. Mater Sci Semicond Process, 26, 69 (2014). http://dx.doi.org/10.1016/j.mssp.2014.04.007.   DOI
30 Yuan W, Gu Y, Li L. Green synthesis of graphene/Ag nanocomposites. Appl Surf Sci, 261, 753 (2012). http://dx.doi.org/10.1016/j.apsusc.2012.08.094.   DOI
31 Chartarrayawadee W, Moulton SE, Li D, Too CO, Wallace GG. Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. Electrochim Acta, 60, 213 (2012). http://dx.doi.org/10.1016/j.electacta.2011.11.058.   DOI
32 Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performance photocatalyst. ACS Nano, 4, 380 (2010). http://dx.doi.org/10.1021/nn901221k.   DOI
33 Son KS, Kim S. Study on electrochemical performances of sulfur-containing graphene nanosheets electrodes for lithium-sulfur cells. Carbon Lett, 15, 113 (2014). http://dx.doi.org/10.5714/cl.2014.15.2.113.   DOI
34 Oh HJ, Hock R, Schurr R, Hölzing A, Chi CS. Phase transformation and photocatalytic characteristics of anodic TiO2 nanotubular film. J Phys Chem Solids, 74, 708 (2013). http://dx.doi.org/10.1016/j.jpcs.2013.01.008.   DOI
35 Menéndez R, Alvarez P, Botas C, Nacimiento F, Alcántara R, Tirado JL, Ortiz GF. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. J Power Sources, 248, 886 (2014). http://dx.doi.org/10.1016/j.jpowsour.2013.10.019.   DOI
36 Oh HJ, Chi CS. Eu–N-doped TiO2 photocatalyst synthesized by micro-arc oxidation. Mater Lett, 86, 31 (2012). http://dx.doi.org/10.1016/j.matlet.2012.07.021.   DOI
37 Steinhart M, Jia Z, Schaper AK, Wehrspohn RB, Gösele U, Wendorff JH. Palladium nanotubes with tailored wall morphologies. Adv Mater, 15, 706 (2003). http://dx.doi.org/10.1002/adma.200304502.   DOI
38 Ghicov A, Schmidt B, Kunze J, Schmuki P. Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chem Phys Lett, 433, 323 (2007). http://dx.doi.org/10.1016/j.cplett.2006.11.065.   DOI
39 Zhu M, Li X, Liu W, Cui Y. An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene–TiO2 composite photoanodes. J Power Sources, 262, 349 (2014). http://dx.doi.org/10.1016/j.jpowsour.2014.04.001.   DOI
40 Muñoz AG. Semiconducting properties of self-organized TiO2 nanotubes. Electrochim Acta, 52, 4167 (2007). http://dx.doi.org/10.1016/j.electacta.2006.11.035.   DOI
41 Krishna V, Noguchi N, Koopman B, Moudgil B. Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. J Colloid Interface Sci, 304, 166 (2006). http://dx.doi.org/10.1016/j.jcis.2006.08.041.   DOI
42 Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK. Fine structure constant defines visual transparency of graphene. Science, 320, 1308 (2008). http://dx.doi.org/10.1126/science.1156965.   DOI
43 Zhu Y, Cai W, Piner RD, Velamakanni A, Ruoff RS. Transparent self-assembled films of reduced graphene oxide platelets. Appl Phys Lett, 95, 103104 (2009). http://dx.doi.org/10.1063/1.3212862.   DOI
44 Lightcap IV, Kosel TH, Kamat PV. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat: storing and shuttling electrons with reduced graphene oxide. Nano Lett, 10, 577 (2010). http://dx.doi.org/10.1021/nl9035109.   DOI
45 Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487 (2008). http://dx.doi.org/10.1021/nn800251f.   DOI