Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.2.121

Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties  

Park, Mi-Seon (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Ko, Yoonyoung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Carbon letters / v.16, no.2, 2015 , pp. 121-126 More about this Journal
Abstract
Carbon fibers are prepared by stabilizing pitch fibers accompanying electron beam (E-beam) irradiation. The carbon fibers pretreated by E-beam irradiation achieve a higher stabilization index than the carbon fibers that are only heat-stabilized. In addition, the carbon fibers subjected to E-beam irradiation in the stabilization step exhibit a comparable tensile strength to that of general purpose carbon fibers. The carbon fibers pretreated with an absorbed dose of 3000 kGy have a tensile strength of 0.54 GPa for a similar fiber diameter. Elemental, Fourier-transform infrared spectroscopy, and thermogravimetric analyses indicate that E-beam irradiation is an efficient oxidation and dehydrogenation treatment for pitch fibers by showing that the intensity of the aliphatic C-H stretching and aromatic $CH_2$ bending (out-of-plane) bands significantly decrease and carbonyl and carboxylic groups form.
Keywords
carbon fibers; pitch; stabilization; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim JG, Im JS, Bae TS, Kim JH, Lee YS. The electrochemical behavior of an enzymatic biosensor electrode using an oxyfluorinated pitch-based carbon. J Ind Eng Chem, 19, 94 (2013). http://dx.doi.org/10.1016/j.jiec.2012.07.008.   DOI   ScienceOn
2 Kim BJ, Lee YS, Park SJ. Novel porous carbons synthesized from polymeric precursors for hydrogen storage. Int J Hydrogen Energy, 33, 2254 (2008). http://dx.doi.org/10.1016/j.ijhydene.2008.02.019.   DOI
3 Yang Q, Liu J, Li S, Wang F, Wu T. Fabrication and mechanical properties of Cu-coated woven carbon fibers reinforced aluminum alloy composite. Mater Des, 57, 442 (2014). http://dx.doi.org/10.1016/j.matdes.2013.12.064.   DOI   ScienceOn
4 Mochida I, Toshima H, Korai Y, Matsumoto T. Blending mesophase pitch to improve its properties as a precursor for carbonfibre. Part 1: Blending of PVC pitch into coal-tar and petroleumderived mesophase pitches. J Mater Sci, 23, 670 (1988). http://dx.doi.org/10.1007/BF01174704.   DOI
5 Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH. Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon, 77, 747 (2014). http://dx.doi.org/10.1016/j.carbon.2014.05.079.   DOI
6 Arbab S, Zeinolebadi A. A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors. Polym Degrad Stab, 98, 2537 (2013). http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.014.   DOI
7 Jung DH, Lee YS, Rhee BS. The stabilization of mesophase pitch based carbon fiber. Hwahak Konghak, 29, 89 (1991).
8 Vautard F, Ozcan S, Poland L, Nardin M, Meyer H. Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes. Composite A, 45, 162 (2013). http://dx.doi.org/10.1016/j.compositesa.2012.08.025.   DOI   ScienceOn
9 Shin HK, Park M, Kang PH, Choi HS, Park SJ. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. J Ind Eng Chem, 20, 3789 (2014). http://dx.doi.org/10.1016/j.jiec.2013.12.080.   DOI
10 Schlemmer B, Bandari R, Rosenkranz L, Buchmeiser MR. Electron beam triggered, free radical polymerization-derived monolithic capillary columns for high-performance liquid chromatography. J Chromatogr A, 1216, 2664 (2009). http://dx.doi.org/10.1016/j.chroma.2008.09.003.   DOI   ScienceOn
11 Lee YS, Basova YV, Edie DD, Reid LK, Newcombe SR, Ryu SK. Preparation and characterization of trilobal activated carbon fibers. Carbon, 41, 2573 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00376-2.   DOI   ScienceOn
12 Jung JY, Lee YS. Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property, Carbon Lett, 15, 129 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.129.   DOI
13 Awasthi K, Singh DP, Singh SK, Dash D, Srivastava ON. Attachment of biomolecules (protein and DNA) to amino-functionalized carbon nanotubes. New Carbon Mater, 24, 301 (2009). http://dx.doi.org/10.1016/S1872-5805(08)60053-0.   DOI
14 Wirawan R, Sapuan SM, Robiah Y, Khalina A. Elastic and viscoelastic properties of sugarcane bagasse-filled poly(vinyl chloride) composites. J Therm Anal Calorim, 103, 1047 (2011). http://dx.doi.org/10.1007/s10973-010-1079-z.   DOI
15 Xue Y, Liu J, Liang J. Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermaloxidative stabilization. Polym Degrad Stab, 98, 219 (2013). http://dx.doi.org/10.1016/j.polymdegradstab.2012.10.018.   DOI
16 In SJ, Ryu SK, Rhee BS. Effect of stirring speed and $N_2$-blowing rate on mesophase formation from naptha tar pitch. Hwahak Konghak, 27, 291 (1989).
17 Zhang Y, Ma H, Zhang K, Zhang S, Wang J. An improved DNA biosensor built by layer-by-layer covalent attachment of multi-walled carbon nanotubes and gold nanoparticles. Electrochim Acta, 54, 2385 (2009). http://dx.doi.org/10.1016/j.electacta.2008.10.052.   DOI   ScienceOn
18 Vilaplana-Ortego E, Alcaniz-Monge J, Cazorla-Amoros D, Linares-Solano A. Stabilisation of low softening point petroleum pitch fibres by iodine treatment. Fuel Process Technol, 88, 265 (2007). http://dx.doi.org/10.1016/j.fuproc.2006.10.005.   DOI
19 Jiang SZ. Focus on Combustion Research, Nova Science Publishers, New York, NY, 7 (2006).
20 Jacquet N, Quievy N, Vanderghem C, Janas S, Blecker C, Wathelet B, Devaux J, Paquot M. Influence of steam explosion on the thermal stability of cellulose fibres. Polym Degrad Stab, 96, 1582 (2011). http://dx.doi.org/10.1016/j.polymdegradstab.2011.05.021.   DOI
21 Alcaniz-Monge J, Cazorla-Amoros D, Linares-Solano A, Oya A, Sakamoto A, Hosm K. Preparation of general purpose carbon fibers from coal tar pitches with low softening point. Carbon, 35, 1079 (1997). http://dx.doi.org/10.1016/S0008-6223(97)00064-X.   DOI
22 Quievy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J. Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab, 95, 306 (2010). http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.020.   DOI
23 Mathur RB, Bahl OP, Mittal J, Nagpal KC. Structure of thermally stabilized PAN fibers. Carbon, 29, 1059 (1991). http://dx.doi.org/10.1016/0008-6223(91)90189-P.   DOI
24 Yu MJ, Bai YJ, Wang CG, Xu Y, Guo PZ. A new method for the evaluation of stabilization index of polyacrylonitrile fibers. Mater Lett, 61, 2292 (2007). http://dx.doi.org/10.1016/j.matlet.2006.08.071.   DOI
25 Mora E, Blanco C, Prada V, Santamaria R. Granda M, Menendez R. A study of pitch-based precursors for general purpose carbon fibers. Carbon, 40, 2719 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00185-9.   DOI   ScienceOn