Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.1.062

Preparation and thermal properties of polyethylene-based carbonized fibers  

Kim, Kwan-Woo (R&D Division Korea Institute of Carbon Convergence Technology)
Lee, Hye-Min (R&D Division Korea Institute of Carbon Convergence Technology)
Kim, Byoung Suhk (Department of Organic Materials & Fiber Engineering Chonbuk National University)
Hwang, Seon-Hwan (LG chemical)
Kwac, Lee-Ku (Department of Carbon Fusion Engineering, Jeonju University)
An, Kay-Hyeok (R&D Division Korea Institute of Carbon Convergence Technology)
Kim, Byung-Joo (R&D Division Korea Institute of Carbon Convergence Technology)
Publication Information
Carbon letters / v.16, no.1, 2015 , pp. 62-66 More about this Journal
Abstract
In this study, carbonized fibers were prepared by using acidically cross-linked LDPE fibers. The surface morphologies of the carbonized fibers were observed by SEM. The effects of cross-linking process temperatures were studied using thermal analyses such as DSC and TGA. The melting and heating enthalpy of the fibers decreased as the cross-linking temperature increased. The cross-linked fibers had a carbonization yield of over 50%. From SEM results the highest yield of carbonized LDPE-based fibers was obtained by cross-linking at a sulfate temperature ($170^{\circ}C$). As a result, carbonation yield of the carbonized fibers was found to depend on the functions of the cross-linking ratio of the LDPE precursors.
Keywords
carbon fiber; sulfuric acid; cross-linking; polyolefin; carbon fiber precursor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fitzer E. Pan-based carbon fibers: present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon, 27, 621 (1989). http://dx.doi.org/10.1016/0008-6223(89)90197-8.   DOI
2 Park SJ, Kim BJ. Carbon fibers and their composites. In: Park SJ, ed. Carbon Fibers. Springer Series in Materials Science Vol. 210, Springer, Netherlands, 275 (2015). http://dx.doi.org/10.1007/978-94-017-9478-7_8.   DOI
3 Kim SY, Kim SY, Lee S, Jo S, Im YH, Lee HS. Microwave plasma carbonization for the fabrication of polyacrylonitrile-based carbon fiber. Polymer, 56, 590 (2015). http://dx.doi.org/10.1016/j.polymer.2014.11.034.   DOI
4 Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab, 92, 1421 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023.   DOI
5 Edie DD. The effect of processing on the structure and properties of carbon fibers. Carbon, 36, 345 (1998). http://dx.doi.org/10.1016/S0008-6223(97)00185-1.   DOI
6 Deng W, Lobovsky A, Iacono ST, Wu T, Tomar N, Budy SM, Long T, Hoffman WP, Smith Jr DW. Poly (acrylonitrile-co-1-vinylimidazole): a new melt processable carbon fiber precursor. Polymer, 52, 622 (2011). http://dx.doi.org/10.1016/j.polymer.2010.11.054.   DOI
7 Kim KS, Shim YS, Kim BJ, Meng LY, Lee SY, Park SJ. Present status and applications of carbon fibers-reinforced composites for aircrafts. Carbon Lett, 11, 235 (2010). http://dx.doi.org/10.5714/CL.2010.11.3.235.   과학기술학회마을   DOI
8 Baker DA, Gallego NC, Baker FS. On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci, 124, 227 (2012). http://dx.doi.org/10.1002/app.33596.   DOI
9 Yusof N, Ismail AF. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis, 93, 1 (2012). http://dx.doi.org/10.1016/j.jaap.2011.10.001.   DOI   ScienceOn
10 Huang X. Fabrication and properties of carbon fibers. Materials, 2, 2369 (2009). http://dx.doi.org/10.3390/ma2042369.   DOI
11 Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P. Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int, 55, 825 (2006). http://dx.doi.org/10.1002/pi.2040.   DOI
12 Jie L, Wangxi Z. Structural changes during the thermal stabilization of modified and original polyacrylonitrile precursors. J Appl Polym Sci, 97, 2047 (2005). http://dx.doi.org/10.1002/app.21916.   DOI
13 Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W. Lignin-based carbon fibers for composite fiber applications. Carbon, 40, 2913 (2002). http://dx.doi.org/10.1016/S0008-6223(02)00248-8.   DOI
14 Zhang WX, Wang YZ. Manufacture of carbon fibers from polyacrylonitrile precursors treated with $CoSO_4$. J Appl Polym Sci, 85, 153 (2002). http://dx.doi.org/10.1002/app.10560.   DOI
15 Baker DA, Rials TG. Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci, 130, 713 (2013). http://dx.doi.org/10.1002/app.39273.   DOI
16 Maradur SP, Kim CH, Kim SY, Kim B-H, Kim WC, Yang KS. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met, 162, 453 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.01.017.   DOI
17 Shen Q, Zhang T, Zhang WX, Chen S, Mezgebe M. Lignin-based activated carbon fibers and controllable pore size and properties. J Appl Polym Sci, 121, 989 (2011). http://dx.doi.org/10.1002/app.33701.   DOI
18 Ibrahim MNM, Ahmed-Haras MR, Sipaut CS, Aboul-Enein HY, Mohamed AA. Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohydr Polym, 80, 1102 (2010). http://dx.doi.org/10.1016/j.carbpol.2010.01.030.   DOI
19 Math F, Marianneau G. A new method for manufacturing carbonfibre microelectrodes. J Neurosci Methods, 52, 149 (1994). http://dx.doi.org/10.1016/0165-0270(94)90123-6.   DOI
20 Hyslop DK, Parent JS. Dynamics and yields of AOTEMPO-mediated polyolefin cross-linking. Polymer, 54, 84 (2013). http://dx.doi.org/10.1016/j.polymer.2012.11.013.   DOI
21 Camara S, Gilbert BC, Meier RJ, van Duin M, Whitwood AC. EPR studies of peroxide decomposition, radical formation and reactions relevant to cross-linking and grafting in polyolefins. Polymer, 47, 4683 (2006). http://dx.doi.org/10.1016/j.polymer.2006.04.015.   DOI
22 Zheng Y, Pan L, Li YG, Li YS. Synthesis and characterisation of novel functional polyolefin containing sulfonic acid groups. Eur Polym J, 44, 475 (2008). http://dx.doi.org/10.1016/j.eurpolymj.2007.11.017.   DOI
23 Penning JP, Lagcher R, Pennings AJ. The effect of diameter on the mechanical properties of amorphous carbon fibres from linear low density polyethylene. Polym Bull, 25, 405 (1991). http://dx.doi.org/10.1007/BF00316913.   DOI
24 Sirisinha K, Boonkongkaew M, Kositchaiyong S. The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym Test, 29, 958 (2010). http://dx.doi.org/10.1016/j.polymertesting.2010.08.004.   DOI
25 Postema AR, De Groot H, Pennings AJ. Amorphous carbon fibres from linear low density polyethylene. J Mater Sci, 25, 4216 (1990). http://dx.doi.org/10.1007/BF00581075.   DOI
26 Zhang D, Sun Q. Structure and properties development during the conversion of polyethylene precursors to carbon fibers. J Appl Polym Sci, 62, 367 (1996). http://dx.doi.org/10.1002/(SICI)1097-4628(19961010)62:2<367::AID-APP11>3.0.CO;2-Z.   DOI
27 Ihata J. Formation and reaction of polyenesulfonic acid. I. Reaction of polyethylene films with $SO_3$. J Polym Sci A, 26, 167 (1988). http://dx.doi.org/10.1002/pola.1988.080260116.   DOI