Browse > Article
http://dx.doi.org/10.5714/CL.2015.16.1.051

Conducting and interface characterization of carbonate-type organic electrolytes containing EMImBF4 as an additive against activated carbon electrode  

Kim, Mingyeong (Department of Chemical and Biochemical Engineering, Pusan National University)
Kim, Kyungmin (Department of Chemical and Biochemical Engineering, Pusan National University)
Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
Publication Information
Carbon letters / v.16, no.1, 2015 , pp. 51-56 More about this Journal
Abstract
Carbonate-type organic electrolytes were prepared using propylene carbonate (PC) and dimethyl carbonate (DMC) as a solvent, quaternary ammonium salts, and by adding different contents of 1-ethyl-3-methyl imidazolium tetrafluoroborate ($EMImBF_4$). Cyclic voltammetry and linear sweep voltammetry were performed to analyze conducting behaviors. The surface characterizations were analyzed by scanning electron microscopy method and X-ray photoelectron spectroscopy. From the experimental results, increasing the $EMImBF_4$ content increased the ionic conductivity and reduced bulk resistance and interfacial resistance. In particular, after adding 15 vol% $EMImBF_4$ in 0.2 M $SBPBF_4$ PC/DMC electrolyte, the organic electrolyte showed superior capacitance and interfacial resistance. However, when $EMImBF_4$ content exceeded 15 vol%, the capacitance was saturated and the voltage range decreased.
Keywords
Conducting; Interface; Electrolytes; Additive; Activated Carbon;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Plenum Press, New York, NY (1999).
2 Sarangapani S, Tilak BV, Chen CP. Materials for electrochemical capacitors: theoretical and experimental constraints. J Electrochem Soc, 143, 3791 (1996). http://dx.doi.org/10.1149/1.1837291.   DOI
3 Kotz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochim Acta, 45, 2483 (2000). http://dx.doi.org/10.1016/S0013-4686(00)00354-6.   DOI
4 Oh M, Park SJ, Jung Y, Kim S. Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met, 162, 695 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.02.021.   DOI   ScienceOn
5 Park S, Kim S. Effect of carbon blacks filler addition on electrochemical behaviors of $Co_3O_4$/graphene nanosheets as a supercapacitor electrodes. Electrochim Acta, 89, 516 (2013). http://dx.doi.org/10.1016/j.electacta.2012.11.075   DOI   ScienceOn
6 Kim J, Park SJ, Kim S. Capacitance behaviors of polyaniline/graphene nanosheet composites prepared by aniline chemical polymerization. Carbon Lett, 14, 51 (2013). http://dx.doi.org/10.5714/CL.2012.14.1.051.   과학기술학회마을   DOI   ScienceOn
7 Kim M, Kim IJ, Yang S, Kim S. Fluoroethylene carbonate addition effect on electrochemical properties of mixed carbonate-based organic electrolyte solution for a capacitor. Bull Korean Chem Soc, 35, 466 (2014). http://dx.doi.org/10.5012/bkcs.2014.35.2.466.   과학기술학회마을   DOI
8 Kim M, Lee L, Jung Y, Kim S. Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized $Al_2O_3$ fillers. J Nanosci Nanotechnol, 13, 7865 (2013). http://dx.doi.org/10.1166/jnn.2013.8107.   DOI
9 Naoi K, Simon P. New materials and new configurations for advanced electrochemical capacitors. Interface, 17, 34 (2008).
10 Burke A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta, 53, 1083 (2007). http://dx.doi.org/10.1016/j.electacta.2007.01.011.   DOI
11 Ding MS, Xu K, Zheng JP, Jow TR. $\gamma$-Butyrolactone-acetonitrile solution of triethylmethylammonium tetrafluoroborate as an electrolyte for double-layer capacitors. J Power Sources, 138, 340 (2004). http://dx.doi.org/10.1016/j.jpowsour.2004.06.039   DOI
12 Ue M. Conductivities and ion association of quaternary ammonium tetrafluoroborates in propylene carbonate. Electrochim Acta, 39, 2083 (1994). http://dx.doi.org/10.1016/0013-4686(94)85092-5.   DOI
13 Xu K, Ding MS, Jow TR. Quaternary onium salts as nonaqueous electrolytes for electrochemical capacitors. J Electrochem Soc, 148, A267 (2001). http://dx.doi.org/10.1149/1.1350665.   DOI
14 Chiba K, Ueda T, Yamaguchi Y, Oki Y, Saiki F, Naoi K. Electrolyte systems for high withstand voltage and durability II. Alkylated cyclic carbonates for electric double-layer capacitors. J Electrochem Soc, 158, A1320 (2011). http://dx.doi.org/10.1149/2.038112jes.   DOI
15 Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem, 35, 1168 (1996). http://dx.doi.org/10.1021/ic951325x.   DOI
16 Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc, Chem Commun, 965 (1992). http://dx.doi.org/10.1039/C39920000965.
17 Galinski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes. Electrochim Acta, 51, 5567 (2006). http://dx.doi.org/10.1016/j.electacta.2006.03.016.   DOI
18 Paul A, Mandal PK, Samanta A. How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][$PF_6$]. Chem Phys Lett, 402, 375 (2005). http://dx.doi.org/10.1016/j.cplett.2004.12.060.   DOI
19 Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev, 99, 2071 (1999). http://dx.doi.org/10.1021/cr980032t.   DOI
20 Palm R, Kurig H, Tonurist K, Janes A, Lust E. Electrical double layer capacitors based on 1-ethyl-3-methylimidazolium tetrafluoroborate with small addition of acetonitrile. Electrochim Acta, 85, 139 (2012). http://dx.doi.org/10.1016/j.electacta.2012.08.030.   DOI
21 Lin R, Taberna PL, Fantini S, Presser V, Perez CR, Malbosc F, Rupesinghe NL, Teo KBK, Gogotsi Y, Simon P. Capacitive energy storage from -50 to $100^{\circ}C$ using an ionic liquid electrolyte. J Phys Chem Lett, 2, 2396 (2011). http://dx.doi.org/10.1021/jz201065t.   DOI
22 Jones JB, Hysert DW. Reactions of some allylic and propargylic halides with nucleophiles analogous to those present in proteins and nucleic acids. Can J Chem, 49, 325 (1971). http://dx.doi.org/10.1139/v71-052.   DOI
23 Yim TE, Lee HY, Kim HJ, Mun JY, Kim SM, Oh SM, Kim YG. Synthesis and properties of pyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide ionic liquids with allyl substituents. Bull Korean Chem Soc, 28, 1567 (2007). http://dx.doi.org/10.5012/bkcs.2007.28.9.1567.   과학기술학회마을   DOI
24 Chan BKM, Chang N, Grimmett MR. The synthesis and thermolysis of imidazole quaternary salts. Aust J Chem, 30, 2005 (1977). http://dx.doi.org/10.1071/CH9772005.   DOI
25 Mizumo T, Marwanta E, Matsumi N, Ohno H. Allylimidazolium halides as novel room temperature ionic liquids. Chem Lett, 33, 1360 (2004). http://dx.doi.org/10.1246/cl.2004.1360.   DOI   ScienceOn
26 Zhao D, Fei Z, Geldbach TJ, Scopelliti R, Laurenczy G, Dyson PJ. Allyl-functionalised ionic liquids: synthesis, characterisation, and reactivity. Helv Chim Acta, 88, 665 (2005). http://dx.doi.org/10.1002/hlca.200590046.   DOI
27 Min GH, Yim TE, Lee HY, Huh DH, Lee EJ, Mun JY, Oh SM, Kim YG. Synthesis and properties of ionic liquids:imidazolium tetrafluoroborates with unsaturated side chains. Bull Korean Chem Soc, 27, 847 (2006). http://dx.doi.org/10.5012/bkcs.2006.27.6.847.   과학기술학회마을   DOI
28 Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc, 124, 4974 (2002). http://dx.doi.org/10.1021/ja025790m.   DOI
29 Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G. Dissolution of cellulose with ionic liquids and its application: a minireview. Green Chem, 8, 325 (2006). http://dx.doi.org/10.1039/B601395C.   DOI
30 Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M. Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules, 5, 266 (2004). http://dx.doi.org/10.1021/bm034398d.   DOI