Effect of chemically reduced graphene oxide on epoxy nanocomposites for flexural behaviors |
Lee, Seul-Yi
(Department of Chemistry, Inha University)
Chong, Mi-Hwa (Department of Chemistry, Inha University) Park, Mira (Department of OrganicMaterials and Fiber Engineering, Chonbuk National University) Kim, Hak-Yong (Department of OrganicMaterials and Fiber Engineering, Chonbuk National University) Park, Soo-Jin (Department of Chemistry, Inha University) |
1 | Shen J, Huang W, Wu L, Hu Y, Ye M. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Composites Sci Technol, 67, 3041 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.04.025. DOI ScienceOn |
2 | Jiang T, Kuila T, Kim NH, Ku BC, Lee JH. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Composites Sci Technol, 79, 115 (2013). http://dx.doi.org/10.1016/j.compscitech.2013.02.018. DOI ScienceOn |
3 | Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y. Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem, 20, 9635 (2010). http://dx.doi.org/10.1039/C0JM01620A. DOI ScienceOn |
4 | Li Z, Young RJ, Wang R, Yang F, Hao L, Jiao W, Liu W. The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer, 54, 5821 (2013). http://dx.doi.org/10.1016/j.polymer.2013.08.026. DOI ScienceOn |
5 | Lim SR, Chow WS. Fracture toughness enhancement of epoxy by organo-montmorillonite. Polym Plast Technol Eng, 50, 182 (2011). http://dx.doi.org/10.1080/03602559.2010.531427. DOI ScienceOn |
6 | Li Z, Wang R, Young RJ, Deng L, Yang F, Hao L, Jiao W, Liu W. Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer, 54, 6437 (2013). http://dx.doi.org/10.1016/j.polymer.2013.09.054. DOI ScienceOn |
7 | Lv S, Ma Y, Qiu C, Sun T, Liu J, Zhou Q. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater, 49, 121 (2013). http://dx.doi.org/10.1016/j.conbuildmat.2013.08.022. DOI ScienceOn |
8 | Feng H, Wang X, Wu D. Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Ind Eng Chem Res, 52, 10160 (2013). http://dx.doi.org/10.1021/ie400483x. DOI ScienceOn |
9 | Wan YJ, Tang LC, Yan D, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ. Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Composites Sci Technol, 82, 60 (2013). http://dx.doi.org/10.1016/j.compscitech.2013.04.009. DOI ScienceOn |
10 | Sanchez M, Campo M, Jimenez-Suarez A, Urena A. Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Composites B, 45, 1613 (2013). http://dx.doi.org/10.1016/j.compositesb.2012.09.063. DOI ScienceOn |
11 | Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci, 35, 1350 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005. DOI ScienceOn |
12 | Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 60, 16 (2013). http://dx.doi.org/10.1016/j.carbon.2013.03.050. DOI ScienceOn |
13 | Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017. DOI |
14 | Potts JR, Murali S, Zhu Y, Zhao X, Ruoff RS. Microwave-exfoliated graphite oxide/polycarbonate composites. macromolecules, 44, 6488 (2011). http://dx.doi.org/10.1021/ma2007317. DOI ScienceOn |
15 | Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969. DOI ScienceOn |
16 | Shiu SC, Tsai JL. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Composites B, 56, 691 (2014). http://dx.doi.org/10.1016/j.compositesb.2013.09.007. DOI ScienceOn |
17 | Jung YC, Kim JH, Hayashi T, Kim YA, Endo M, Terrones M, Dresselhaus MS. Fabrication of transparent, tough, and conductive shape-memory polyurethane films by incorporating a small amount of high-quality graphene. Macromol Rapid Commun, 33, 628 (2012). http://dx.doi.org/10.1002/marc.201100674. DOI ScienceOn |
18 | Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52, 4001 (2011). http://dx.doi.org/10.1016/j.polymer.2011.06.045. DOI ScienceOn |
19 | Salavagione HJ, Martinez G, Gomez MA. Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J Mater Chem, 19, 5027 (2009). http://dx.doi.org/10.1039/B904232F. DOI ScienceOn |
20 | Wang X, Jin J, Song M. An investigation of the mechanism of graphene toughening epoxy. Carbon, 65, 324 (2013). http://dx.doi.org/10.1016/j.carbon.2013.08.032. DOI ScienceOn |
21 | Castelain M, Martinez G, Ellis G, Salavagione HJ. A versatile chemical tool for the preparation of conductive graphene-based polymer nanocomposites. Chem Commun, 49, 8967 (2013). http://dx.doi.org/10.1039/C3CC43729A. DOI ScienceOn |
22 | Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater, 19, 2297 (2009). http://dx.doi.org/10.1002/adfm.200801776 DOI ScienceOn |
23 | Lee SY, Park SJ. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Lett, 13, 73 (2012). http://dx.doi.org/10.5714/CL.2012.13.2.073. DOI ScienceOn |
24 | Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 3, 491 (2008). http://dx.doi.org/10.1038/nnano.2008.199. DOI ScienceOn |
25 | Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996. DOI ScienceOn |
26 | Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872. DOI ScienceOn |