Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.1.067

Effect of chemically reduced graphene oxide on epoxy nanocomposites for flexural behaviors  

Lee, Seul-Yi (Department of Chemistry, Inha University)
Chong, Mi-Hwa (Department of Chemistry, Inha University)
Park, Mira (Department of OrganicMaterials and Fiber Engineering, Chonbuk National University)
Kim, Hak-Yong (Department of OrganicMaterials and Fiber Engineering, Chonbuk National University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.15, no.1, 2014 , pp. 67-70 More about this Journal
Abstract
In this work, nanocomposites of epoxy resin and chemically reduced graphene oxide (RGO) were prepared by thermal curing process. X-ray diffractions confirmed the microstructural properties of RGO. Differential scanning calorimetry was used to evaluate the curing behaviors of RGO/epoxy nanocomposites with different RGO loading amounts. We investigated the effect of RGO loading amounts on the mechanical properties of the epoxy nanocomposites. It was found that the presence of RGO improved both flexural strength and modulus of the epoxy nanocomposites till the RGO loading reached 0.4 wt%, and then decreased. The optimum loading achieved about 24.5 and 25.7% improvements, respectively, compared to the neat-epoxy composites. The observed mechanical reinforcement might be an enhancement of mechanical interlocking between the epoxy matrix and RGO due to the unique planar structures.
Keywords
chemically reduced graphene oxide; epoxy; nanocomposites; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shen J, Huang W, Wu L, Hu Y, Ye M. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Composites Sci Technol, 67, 3041 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.04.025.   DOI   ScienceOn
2 Jiang T, Kuila T, Kim NH, Ku BC, Lee JH. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Composites Sci Technol, 79, 115 (2013). http://dx.doi.org/10.1016/j.compscitech.2013.02.018.   DOI   ScienceOn
3 Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y. Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem, 20, 9635 (2010). http://dx.doi.org/10.1039/C0JM01620A.   DOI   ScienceOn
4 Li Z, Young RJ, Wang R, Yang F, Hao L, Jiao W, Liu W. The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer, 54, 5821 (2013). http://dx.doi.org/10.1016/j.polymer.2013.08.026.   DOI   ScienceOn
5 Lim SR, Chow WS. Fracture toughness enhancement of epoxy by organo-montmorillonite. Polym Plast Technol Eng, 50, 182 (2011). http://dx.doi.org/10.1080/03602559.2010.531427.   DOI   ScienceOn
6 Li Z, Wang R, Young RJ, Deng L, Yang F, Hao L, Jiao W, Liu W. Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer, 54, 6437 (2013). http://dx.doi.org/10.1016/j.polymer.2013.09.054.   DOI   ScienceOn
7 Lv S, Ma Y, Qiu C, Sun T, Liu J, Zhou Q. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater, 49, 121 (2013). http://dx.doi.org/10.1016/j.conbuildmat.2013.08.022.   DOI   ScienceOn
8 Feng H, Wang X, Wu D. Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Ind Eng Chem Res, 52, 10160 (2013). http://dx.doi.org/10.1021/ie400483x.   DOI   ScienceOn
9 Wan YJ, Tang LC, Yan D, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ. Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Composites Sci Technol, 82, 60 (2013). http://dx.doi.org/10.1016/j.compscitech.2013.04.009.   DOI   ScienceOn
10 Sanchez M, Campo M, Jimenez-Suarez A, Urena A. Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM. Composites B, 45, 1613 (2013). http://dx.doi.org/10.1016/j.compositesb.2012.09.063.   DOI   ScienceOn
11 Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci, 35, 1350 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.07.005.   DOI   ScienceOn
12 Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 60, 16 (2013). http://dx.doi.org/10.1016/j.carbon.2013.03.050.   DOI   ScienceOn
13 Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.   DOI
14 Potts JR, Murali S, Zhu Y, Zhao X, Ruoff RS. Microwave-exfoliated graphite oxide/polycarbonate composites. macromolecules, 44, 6488 (2011). http://dx.doi.org/10.1021/ma2007317.   DOI   ScienceOn
15 Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.   DOI   ScienceOn
16 Shiu SC, Tsai JL. Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Composites B, 56, 691 (2014). http://dx.doi.org/10.1016/j.compositesb.2013.09.007.   DOI   ScienceOn
17 Jung YC, Kim JH, Hayashi T, Kim YA, Endo M, Terrones M, Dresselhaus MS. Fabrication of transparent, tough, and conductive shape-memory polyurethane films by incorporating a small amount of high-quality graphene. Macromol Rapid Commun, 33, 628 (2012). http://dx.doi.org/10.1002/marc.201100674.   DOI   ScienceOn
18 Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer, 52, 4001 (2011). http://dx.doi.org/10.1016/j.polymer.2011.06.045.   DOI   ScienceOn
19 Salavagione HJ, Martinez G, Gomez MA. Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J Mater Chem, 19, 5027 (2009). http://dx.doi.org/10.1039/B904232F.   DOI   ScienceOn
20 Wang X, Jin J, Song M. An investigation of the mechanism of graphene toughening epoxy. Carbon, 65, 324 (2013). http://dx.doi.org/10.1016/j.carbon.2013.08.032.   DOI   ScienceOn
21 Castelain M, Martinez G, Ellis G, Salavagione HJ. A versatile chemical tool for the preparation of conductive graphene-based polymer nanocomposites. Chem Commun, 49, 8967 (2013). http://dx.doi.org/10.1039/C3CC43729A.   DOI   ScienceOn
22 Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater, 19, 2297 (2009). http://dx.doi.org/10.1002/adfm.200801776   DOI   ScienceOn
23 Lee SY, Park SJ. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Lett, 13, 73 (2012). http://dx.doi.org/10.5714/CL.2012.13.2.073.   DOI   ScienceOn
24 Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 3, 491 (2008). http://dx.doi.org/10.1038/nnano.2008.199.   DOI   ScienceOn
25 Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.   DOI   ScienceOn
26 Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). http://dx.doi.org/10.1021/nl0731872.   DOI   ScienceOn