Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.1.025

Morphological optimization of process parameters of randomly oriented carbon/carbon composite  

Raunija, Thakur Sudesh Kumar (Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Indian, Space Research Organisation)
Manwatkar, Sushant Krunal (Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Indian, Space Research Organisation)
Sharma, Sharad Chandra (Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Indian, Space Research Organisation)
Verma, Anil (Department of Chemical Engineering, Indian Institute of Technology)
Publication Information
Carbon letters / v.15, no.1, 2014 , pp. 25-31 More about this Journal
Abstract
A microstructure analysis is carried out to optimize the process parameters of a randomly oriented discrete length hybrid carbon fiber reinforced carbon matrix composite. The composite is fabricated by moulding of a slurry into a preform, followed by hot-pressing and carbonization. Heating rates of 0.1, 0.2, 0.3, 0.5, 1, and $3.3^{\circ}C/min$ and pressures of 5, 10, 15, and 20 MPa are applied during hot-pressing. Matrix precursor to reinforcement weight ratios of 70:30, 50:50, and 30:70 are also considered. A microstructure analysis of the carbon/carbon compacts is performed for each variant. Higher heating rates give bloated compacts whereas low heating rates give bloating-free, fine microstructure compacts. The compacts fabricated at higher pressure have displayed side oozing of molten pitch and discrete length carbon fibers. The microstructure of the compacts fabricated at low pressure shows a lack of densification. The compacts with low matrix precursor to reinforcement weight ratios have insufficient bonding agent to bind the reinforcement whereas the higher matrix precursor to reinforcement weight ratio results in a plaster-like structure. Based on the microstructure analysis, a heating rate of $0.2^{\circ}C/min$, pressure of 15 MPa, and a matrix precursor to reinforcement ratio of 50:50 are found to be optimum w.r.t attaining bloating-free densification and processing time.
Keywords
carbon/carbon composite; processing parameters; hot-pressing; carbonization and morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rao MV, Mahajan P, Mittal RK. Effect of architecture on mechanical properties of carbon/carbon composites. Compos Struct, 83, 131 (2008). http://dx.doi.org/10.1016/j.compstruct.2007.04.003.   DOI
2 Shin HK, Lee HB, Kim KS. Tribological properties of pitch-based 2-D carbon-carbon composites. Carbon, 39, 959 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00158-5.   DOI   ScienceOn
3 Luo R, Huai X, Qu J, Ding H, Xu S. Effect of heat treatment on the tribological behavior of 2D carbon/carbon composites. Carbon, 41, 2693 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00291-4.   DOI
4 Raunija TSK, Babu S. Randomly oriented carbon/carbon composite. AIP Conf Proc, 1538, 168 (2013). http://dx.doi.org/10.1063/1.4810050.   DOI
5 Savage G. Carbon/Carbon Composites, Chapman & Hall, New York, NY, 176 (1993).
6 Luo R. Friction performance of C/C composites prepared using rapid directional diffused chemical vapor infiltration processes. Carbon, 40, 1279 (2002). http://dx.doi.org/10.1016/S0008-6223(01)00283-4.   DOI   ScienceOn
7 Xiong X, Huang BY, Li JH, Xu HJ. Friction behaviors of carbon/carbon composites with different pyrolytic carbon textures. Carbon, 44, 463 (2006). http://dx.doi.org/10.1016/j.carbon.2005.08.022.   DOI
8 Wang Q, Han XH, Sommers A, Park Y, T' Joen C, Jacobi A. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks. Int J Refrig, 35, 7 (2012). http://dx.doi.org/10.1016/j.ijrefrig.2011.09.001.   DOI
9 Gandikota V, Jones GF, Fleischer AS. Thermal performance of a carbon fiber composite material heat sink in an FC-72 thermosyphon. Exp Therm Fluid Sci, 34, 554 (2010). http://dx.doi.org/10.1016/j.expthermflusci.2009.11.008.   DOI
10 Kasem H, Bonnamy S, Berthier Y, Dufrenoy P, Jacquemard P. Tribological, physicochemical and thermal study of the abrupt friction transition during carbon/carbon composite friction. Wear, 267, 846 (2009). http://dx.doi.org/10.1016/j.wear.2008.12.076.   DOI
11 Raunija TSK, Babu S, Wesley CS. A process of producing carbon/carbon composite. Indian Patent, Application No. 1713/CHE/2012 (2012).
12 Barabash V, Akiba M, Bonal JP, Federici G, Matera R, Nakamura K, Pacher HD, Rodig M, Vieider G, Wu CH. Carbon fiber composites application in ITER plasma facing components. J Nucl Mater, 258-263, 149 (1998). http://dx.doi.org/10.1016/S0022-3115(98)00267-0.   DOI
13 Ozturk A, Moore RE. Tensile fatigue behaviour of tightly woven carbon/carbon composites. Composites, 23, 39 (1992). http://dx.doi.org/10.1016/0010-4361(92)90284-2.   DOI
14 Li C, Crosky A. The effect of carbon fabric treatment on delamination of 2D-C/C composites. Composites Sci Technol, 66, 2633 (2006). http://dx.doi.org/10.1016/j.compscitech.2006.03.025.   DOI   ScienceOn
15 Tzeng SS, Lin WC. Mechanical behavior of two-dimensional carbon/carbon composites with interfacial carbon layers. Carbon, 37, 2011 (1999). http://dx.doi.org/10.1016/S0008-6223(99)00074-3.   DOI
16 Appleyard SP, Rand B. The effect of fibre-matrix interactions on structure and property changes during the fabrication of unidirectional carbon/carbon composites. Carbon, 40, 817 (2002). http://dx.doi.org/10.1016/S0008-6223(01)00204-4.   DOI   ScienceOn
17 Lucchesi AJ, Hay JC, White KW. Characterization of wakezone tractions in an oxidation-inhibited carbon/carbon composite. Composites Sci Technol, 49, 315 (1993). http://dx.doi.org/10.1016/0266-3538(93)90062-L.   DOI
18 Ko TH, Kuo WS, Chang YH. Influence of carbon-fiber felts on the development of carbon-carbon composites. Composites A, 34, 393 (2003). http://dx.doi.org/10.1016/S1359-835X(03)00053-8.   DOI