Browse > Article
http://dx.doi.org/10.5714/CL.2010.11.2.096

Electrical Enhancement of Polyurethane Composites Filled with Multiwalled Carbon Nanotubes by Controlling their Dispersion and Damage  

Kim, Yoon-Jin (Department of Materials Science and Engineering, Korea University)
Jang, Yong-Kyun (Department of Materials Science and Engineering, Korea University)
Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University)
Park, Min (Polymer Hybrid Center, Korea Institute of Science and Technology)
Kim, Jun-Kyung (Polymer Hybrid Center, Korea Institute of Science and Technology)
Yoon, Ho-Gyu (Department of Materials Science and Engineering, Korea University)
Publication Information
Carbon letters / v.11, no.2, 2010 , pp. 96-101 More about this Journal
Abstract
Dispersion of the functionalized multiwalled nanotubes (MWNT) in the polyurethane (PU) matrix and DC conductivity of the MWNT/PU composites are investigated with the oxidation conditions, the kind of surfactants and their content. First, the most optimal surfactant type and its critical micelle concentration in the MWNT suspension are determined as a cationic surfactant, benzalkonium chloride (BKC) of 0.6 wt.% to the MWNT content from DEA and FESEM results. All the MWNT oxidized under several conditions are negatively charged and functionalized with carboxylic group, whereas the degree of damage is different from oxidation conditions. In addition, each MWNT/PU composite derived from several oxidation conditions shows different DC conductivity at a characteristic MWNT content. It is found that in order to enhance DC conductivity of the polymeric composites containing the oxidized MWNT the better dispersion of MWNT should be obtained by effective functionalities and surfactant adsorption with preserving the intrinsic geometry of pristine MWNT.
Keywords
Oxidation; DC conductivity; Surfactant; HRTEM; MWNT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Atkin, R.; Craig, U. S. J.; Wanless, E. J.; Biggs, S. Adv. Collid. Interface Sci. 2003, 103, 219.   DOI   ScienceOn
2 Ramasubramaniam, R. J. Chem. Appl. Phys. Lett. 2003, 83, 2928.   DOI   ScienceOn
3 Rao, C. N. R.; Sen, R. Chem. Commun. 1998, 15, 1525.
4 Peng, J.; Qu, X.; Wei, G.; Li, J.; Qiao, J. Carbon 2004, 42, 2741.   DOI   ScienceOn
5 Ando, Y.; Zhao, X.; Shimoyama, H.; Sakai, G.; Kaneto, K. Inter. J. Inorganic Mater. 1999, 1, 77.   DOI   ScienceOn
6 Kim, Y. J.; Shin, T. S.; Choi H. D.; Kwon, J. H.; Chung, Y. C.; Yoon, H. G. Carbon 2005, 43, 23.   DOI   ScienceOn
7 Kuzmany, H.; Kukovecz, A.; Simon, F.; Holzweber, M.; Kramberger, C. H.; Pichler, T. Synthetic Metals 2004, 141, 113.   DOI   ScienceOn
8 Sloan, J.; Green, M. L. H. "Encapsulation and crystallization behavior of materials inside carbon nanotube", Vol. 5, ed. Nalwa H.S., Academic Press, New York, 2000, 407.
9 Vaccarini, L.; Goze, C.; Aznar, R.; Micholet, V.; Journet, C.; Bernier, P. Synthetic Metals 1999, 103, 2492.   DOI   ScienceOn
10 Ago, H.; Cacialli, F.; Petritsch, K.; Friend, R. H.; Kugler, T. H.; Salaneck, W. R.; Ono, Y.; Yamabe, T.; Tanaka, K. Synthetic Metals 1999, 103, 2494.   DOI   ScienceOn
11 Appenzeller, J.; Joselevich, E.; H nlen, W. "Nanoelectronics and information technology", Darmstadt: Wiley-VCH Gmbh & Co. 2003, 475.
12 Bonard, J. M.; Stora, T.; Salvetat, J. P.; Maier, F.; Stockli, T.; Duschl, C.; Forro, L.; Heer, W. A.; Chatelain, A. Adv. Mater. 1997, 9, 827.   DOI   ScienceOn
13 Lu, Z.; Luo, C. Phys. Lett. A 2001, 289, 121.   DOI   ScienceOn
14 Endo, M.; Saito, R.; Dresselhaus, G. chapter "From Carbon Fibers to Nanotubes", ed. By T. W. Ebbessen, B. Raton, CRC Press, 1997, Chap. 9.