Browse > Article
http://dx.doi.org/10.9799/ksfan.2021.34.1.026

Thermal Inactivation of Myrosinase from White Mustard Seeds  

Ko, Young Hwan (Dept. of Food Bioengineering, Jeju National University)
Lee, Ran (Dept. of Food Bioengineering, Jeju National University)
Publication Information
The Korean Journal of Food And Nutrition / v.34, no.1, 2021 , pp. 26-35 More about this Journal
Abstract
Myrosinases (thioglucosidases) catalyze the hydrolysis of a class of compounds called glucosinolates, of which the aglycones show various biological functions. It is often necessary to minimize the loss of myrosinase activity during thermal processing of cruciferous vegetables. Myrosinase was isolated from a popular spice, white mustard (Sinapis alba), and its thermal inactivation kinetics was investigated. The enzyme was extracted from white mustard seeds and purified by a sequential processes of ammonium sulfate fractionation, Concanavalin A-Sepharose column chromatography, and gel permeation chromatography. At least three isozymes were revealed by Concanavalin A-Sepharose column chromatography. The purity of the major myrosinase was examined by native polyacrylamide gel electrophoresis and on-gel activity staining with methyl red. The molecular weight of the major enzyme was estimated to be 171 kDa. When the consecutive step model was used for the thermal inactivation of the major myrosinase, its inactivation energy was 44.388 kJ/mol for the early stage of destruction and 32.019 kJ/mol for the late stage of destruction. When the distinct two enzymes model was used, the inactivation energy was 77.772 kJ/mol for the labile enzyme and 95.145 kJ/mol for the stable enzyme. The thermal inactivation energies lie within energy range causing nutrient destruction on heating.
Keywords
myrosinase isozyme; thermal inactivation; activity staining; mustard; biological function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim MY, Jang GY, Lee Y, Kim KM, Kang TS, Lee J, Jeong HS, Kim MY, Jang GY, Lee YJ, Kim KM, Lee J, Jeong HS. 2018. Effect of enhancement on functionality of germinated Adzuki bean (Angularis angularis var. nipponensis) with high hydrostatic pressure (HHP) treatment. Korean J Food Nutr 31:135-142   DOI
2 Kim SY, O H, Lee P, Kim YS, Kim SY, Oh HB, Lee HR, Kim YS. 2019. Impact of different cooking methods on food quality retention of antioxidant compound in black carrot. Korean J Food Nutr 32:89-97   DOI
3 Layne E. 1957. Spectrophotometric and turbidimetric methods for measuring proteins. In Colowick SP, Kaplan NO (Eds.), Methods Enzymol. Vol. 3, pp.447-454. Academic Press
4 Ling B, Tang J, Kong F, Mitcham EJ, Wang S. 2015. Kinetics of food quality changes during thermal processing: A review. Food Bioprocess Technol 8:343-358   DOI
5 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275   DOI
6 Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M. 1999. Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L-Cv. italica). J Agric Food Chem 47:1794-1800   DOI
7 Mahn A, Angulo A, Cabanas C. 2014. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase). J Agric Food Chem 62:11666-11671   DOI
8 Mokhtari RB, Baluch N, Homayouni TS, Morgatskaya E, Kumar S, Kazemi P, Yeger H. 2018. The role of sulforaphane in cancer chemoprevention and health benefits: A mini-review. J Cell Community Signaling 12:91-101   DOI
9 Naumoff DG. 2011. Hierarchical classification of glycoside hydrolases. Biochem (Mosc) 76:622-635   DOI
10 Nambi VE, Gupta RK, Kumar S, Sharma PC. 2016. Degradation kinetics of bioactive components, antioxidant activity, colour and textural properties of selected vegetables during blanching. J Food Sci Technol 53:3073-3082   DOI
11 Ohtsuru M, Hata T. 1972. Molecular properties of multiple forms of plant myrosinase. Agric Biol Chem 36:2495-2503   DOI
12 Okunade OA, Ghawi SK, Methven L, Niranjan K. 2015. Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Food Chem 187:485-490   DOI
13 Ornstein L. 1964. Disc electrophoresis-I background and theory. Ann N Y Acad Sci 121:321-349   DOI
14 Pessina A, Thomas RM, Palmieri S, Luisi PL. 1990. An improved method for the purification of myrosinase and its physicochemical characterization. Arch Biochem Biophys 280:383-389   DOI
15 Sumner JB. 1924. The estimation of sugar in diabetic urine using dinitrosalicylic acid. J Biol Chem 62:287-290   DOI
16 Robert CM, Cadet FR, Rouch CC, Pabion M, Richard-Forget F. 1995. Kinetic study of the irreversible thermal deactivation of palmito (Acanthophoenix rubra) polyphenol oxidase and effect of pH. J Agric Food Chem 43:1143-1150   DOI
17 Shalini GR, Shivhare US, Basu S. 2008. Thermal inactivation kinetics of peroxidase in mint leaves. J Food Eng 85:147-153   DOI
18 Shin CK, Seo KL, Kang KS, Ahn CW, Kim YG, Shim KH. 1996. Purification and enzymatic properties of myrosinase in Korean mustard seed (Brassica juncea). J Korean Soc Food Sci Nutr 25:687-694
19 Van Eylen D, Oey I, Hendrickx M, Van Loey A. 2008. Behavior of mustard seed (Sinapis alba L.) myrosinase during temperature/pressure treatments: a case study on enzyme activity and stability. Eur Food Res Technol 226:545-553   DOI
20 Van Eylen D, Indrawati, Hendrickx M, Van Loey A. 2006. Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chem 97:263-271   DOI
21 Verkerk R, Dekker M. 2004. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318-7323   DOI
22 Weemaes CA, Ludikhuyze LR, Van den Broeck I, Hendrickx M. 1998. Kinetics of combined pressure-temperature inactivation of avocado polyphenol oxidase. Biotechnol Bioeng 60:292-300   DOI
23 Weng JR, Tsai CH, Kulp SK, Chen CS. 2008. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett 262:153-163   DOI
24 Zhang Y. 2010. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol Nutr Food Res 54:127-135   DOI
25 Bjorkman R, Janson JC. 1972. Studies on myrosinases: I. Purification and characterization of a myrosinase from white mustard seed (Sinapis alba L.). Biochim Biophys Acta Enzymol 276:508-518   DOI
26 Albena T, Dinkova K, Rumen VK. 2012. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18:337-347   DOI
27 Bellostas N, Petersen IL, Sorensen JC, Sorensen H. 2008. A fast and gentle method for the isolation of myrosinase complexes from Brassicaceous seeds. J Biochem Biophys Methods 70:918-925   DOI
28 Bhat R, Kaur T, Khajuria M, Vyas R, Vyas D. 2015. Purification and characterization of a novel redox-regulated isoform of myrosinase (β-thioglucoside glucohydrolase) from Lepidium latifolium L. J Agric Food Chem 63:10218-10226   DOI
29 Bones AM, Rossiter JT. 1996. The myrosinase-glucosinolate system, its organization and biochemistry. Physiol Plant 97:194-208   DOI
30 Brunelle JL, Green R. 2014. Chapter thirteen - coomassie blue staining. In Lorsch J (Ed.), Methods in Enzymology. Vol. 541, pp.161-167. Academic Press
31 Gonda S, Szucs Z, Plaszko T, Cziaky Z, Kiss-Szikszai A, Vasas G, M-Hamvas M. 2018. A simple method for on-gel detection of myrosinase activity. Molecules 23:2204   DOI
32 Burmeister WP, Cottaz S, Driguez H, Iori R, Palmieri S, Henrissat B. 1997. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure 5:663-676   DOI
33 Davis BJ. 1964. Disc electrophoresis-II: Method and application to human serum proteins. Ann N Y Acad Sci 121:404-427   DOI
34 Divakaran M, Babu KN. 2016. Mustard. In Caballero B, Finglas PM, Toldra F (Eds.), Encyclopedia of Food and Health. pp.9-19. Academic Press
35 Durham PL, Poulton JE. 1990. Enzymic properties of purified myrosinase from Lepidium sativum seedlings. Z Naturforsch C 45:173-178   DOI
36 Ghawi SK, Methven L, Rastall RA, Niranjan K. 2012. Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: A kinetic study. Food Chem 131:1240-1247   DOI
37 Gupta P, Wright SE, Kim SH, Srivastava SK. 2014. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta 1846:405-424
38 Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303-333   DOI