Browse > Article
http://dx.doi.org/10.11626/KJEB.2022.40.4.423

Mass rearing system for Neodryinus typhlocybae(Hymenoptera: Dryinidae) as a biological control agent of Metcalfa pruinosa  

Meeja Seo (Crop Protection Division, Dept. of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA)
Jeong Hwan Kim (Crop Protection Division, Dept. of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA)
Hyeon Jung Noh (Crop Protection Division, Dept. of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA)
Bo Yoon Seo (Crop Protection Division, Dept. of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA)
Jum Rae Cho (Crop Protection Division, Dept. of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA)
Hong Hyun Park (Crop Protection Division, Dept. of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, RDA)
Publication Information
Korean Journal of Environmental Biology / v.40, no.4, 2022 , pp. 423-432 More about this Journal
Abstract
The mass-rearing system for Neodryinus typhlocybae as a biological control agent of Metcalfa pruinosa was established. Depending on the density of host nymphs and plants, the average number of cocoons produced by the parasitoids was 5-8 and 70-150 cocoons per leaf and sapling of mulberry, respectively. There is a significant difference in cocoon length between females (6.10-6.46mm) and males (4.20-4.62mm). Sex determination of cocoons before emergence will be helpful for efficiently releasing this parasitoid in fields. The parasitic rate of N. typhlocybae at the semi-field condition was on average 13-17%. The release number of this parasitoid did not affect parasitism. Nevertheless, the population growth rate of M. pruinosa was reduced by increasing the release number of N. typhlocybae. The parasitoid offspring's sex and bivoltine were influenced by the host age. On young host nymphs, the bivoltine portion of parasitoid increased. When parasitized on 4th or 5th nymphs, the offspring's female ratio of N. typhlocybae increased. This result may be useful for potentially controlling mass rearing production of parasitoid.
Keywords
mass rearing; biological control; introduction of natural enemy;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Alma A, C Ferracini and G Burgio. 2005. Development of a sequential plan to evaluate Neodryinus typhlocybae (Ashmead) (Hymenoptera: Dryinidae) population associated with Metcalfa pruinosa (Say) (Hemiptera: Flatidae) infestation in Northwestern Italy. Environ. Entomol. 34:819-824. https://doi.org/10.1603/0046-225X-34.4.819   DOI
2 Begnoli B and A Lucchi. 2000. Dannosita e misure di controllo integrato. pp. 65-88. In: La Metcalfa negli ecostemi italiani (Lucchi A, ed.). ARSIA Regione Toscana. Florence, Italy.
3 Chau A, KM Henz and FT Davies. 2005. Influences of fertilization on population abundance, distribution, and control of Frankliniella occidentalis on chrysanthemum. Entomol. Exp. Appl. 117:27-39. https://doi.org/10.1111/j.1570-7458.2005.00326.x   DOI
4 Ciampolini M, A Grossi and G Zottarelli. 1987. Damage to soybean through attack by Metcalfa pruinosa. Inf. Agrar. 43:101-103.
5 Dean HH and JC Bailey. 1961. A flatid planthopper, Metcalfa pruinosa. J. Econ. Entomol. 54:1104-1106.   DOI
6 Doak P. 2000. The effects of plant dispersion and prey density on parasitism rates in a naturally patchy habitat. Oecologia 122:556-567.   DOI
7 Frilli F, A Villani and P Zandigiacomo. 2001. Neodryinus typhlocybae (Ashmead) antagonista di Metcalfa pruinosa (Say), Risultati di liberazioni plutiennali effettuate in Friulii-Venezia Giulia. Entomologica 35:27-38. https://doi.org/10.15162/0425-1016/728   DOI
8 Girolami V and L Mazzon. 2001. Esperienze di lotta biologica e integrate a Metcalfa pruinosa con Neodryinus typhlocybae. Atti dell'Accademia Nazionale Italiana di Entomologia 49:165-184.
9 Guglielmino A and M Olmi. 1997. A host-parasite catalog of world Drynidae (Hymenoptera: Chrysidoidea). Contrib. Entomol. Int. 2:165-298. https://doi.org/10.11646/zootaxa.1139.1.4   DOI
10 Hosseini M, A Ashouri, A Enkegaard, SH Goldansaz, M Nasiri Nahalati and V Hosseininaveh. 2010. Performance and population growth rate of the cotton aphid and associated yield losses of cucumber under different nitrogen fertilization regimes. Int. J. Pest Manag. 56:127-137. https://doi.org/10.1080/09670870903248827   DOI
11 Kim HS, DY Moon, JS Park, SC Lee, PC Lippold and YD Chang. 1979. Studies on integrated control of citrus pests (2) control of ruby scales (Ceroplastes rubens) on citrus by introduction of a parasitic natural enemy, Anicetus deneficus (Hymenoptera, Encyrtidae). Korean J. Plant Prot. 18:107-110.
12 King BH. 2002. Offspring sex ratio and number in response to proportion of host sizes and ages in the parasitoid wasp, Spalangia cameroni (Hymenoptera: Pteromalidae). Environ. Entomol. 31:505-508. https://doi.org/10.1603/0046-225x-31.3.505   DOI
13 Lee WH, CG Park, BY Seo and SG Lee. 2016. Development of an emergence model for overwintering eggs of Metcalfa pruinnosa (Hemiptera: Flatidae). Korean J. Appl. Entomol. 55:35-43. https://doi.org/10.5656/KSAE.2015.12.0.064   DOI
14 Mazzon L, A Lucchi, V Girolami and L Santini. 2001. Investigation on voltinism of Neodryinus typhlocybae (Ashmead) (Hymenoptera: Dryinidae) in natural context. Frustula Entomol. 37:9-19.
15 Ode PJ and KM Heinz. 2002. Host-size dependent sex ratio theory and improving mass-reared parasitoid sex ratios. Biol. Control 24:31-41. https://doi.org/10.1016/S1049-9644(02)00003-8   DOI
16 Olmi M. 1999. Hymenoptera: Dryinidae-Embolemidae. Fauna d'Italia. Vol. 37. Edizioni Calderini. Bolonga, Italy.
17 Queiroz AP, ADF Bueno, AP Fernandes, OC Bortolotto, AY Mikami and L Olive. 2017. Influence of host preference, mating and release density on the parasitism of Telenomus remus (Nixon) (Hymenoptera: Platygastridae). Rev. Bras. Enomol. 61:86-90. https://doi.org/10.1016/j.ebe.2016.12.004   DOI
18 Seo HY, DK Park, IS Hwang and YS Choi. 2019. Host plants of Metcalfa pruinosa (Say) (Hemiptera: Flatidae) nymphs and adult. Korean J. Appl. Entomol. 58:363-380. https://doi.org/10.5656/KSAE.2019.10.0.044   DOI
19 Seo M, JH Kim, BY Seo, C Park, BR Choi, KH Kim, CW Ji and JR Cho. 2018. Mass-rearing techniques of Anastatus orientalis (Humenoptera: Eupelmidae), as the egg-parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae): An using method of Antheraea pernyi (Lepidoptera: Saturniidae) and L. delicatula eggs in laboratory. Korean J. Appl. Entomol. 57:243-251. https://doi.org/10.5656/KSAE.2018.08.0.035   DOI
20 Stireman JO and MS Singer. 2002. Spatial and temporal heterogeneity in the parasitoid assemblage of an exophytic polyphagous caterpillar. Ecol. Entomol. 27:588-600. https://doi.org/10.1046/j.1365-2311.2002.00450.x   DOI
21 Strauss G. 2009. Host range testing of the nearctic beneficial parasitoid, Neodryinus typhlocybae. Biocontrol 54:163-171. https://doi.org/10.1007/s10526-008-9176-7   DOI
22 Strauss G. 2010. Pest risk analysis of Metcalfa pruinosa in Austria. J. Pest Sci. 83:381-390. https://doi.org/10.1007/s10340-010-0308-3   DOI
23 Ueno T. 1998. Adaptiveness of sex ratio control by the pupal parasitoid Itoplectis naranye (Humenoptera: Ichneumonidae) in response to host size. Evol. Ecol. 12:643-654. https://doi.org/10.1023/A:1006577314205   DOI
24 Van Driesche RG and TS Bellows. 1996. Biological Control. Springer. Boston, MA.
25 Wilson SW and A Lucchi. 2001. Distribution and ecology of Metcalfa pruinosa and associated planthoppers in North America (Homoptera: Fulgoroidea). pp. 121-130. In: Metcalfa pruinosa: Flatide di Interesse Agrario, Urbano e Apistico. Accademia Nazionale Italiana di Entomologia. Florence, Italy.