Browse > Article
http://dx.doi.org/10.11626/KJEB.2022.40.3.290

Alexandrium pacificum(Group IV) isolated from Jangmok Bay, Korea: Morphology, phylogeny, and effects of temperature, salinity, and nutrient levels on growth  

Kyong Ha Han (Library of Marine Samples, Korea Institute of Ocean Science and Technology)
Joo Yeon Youn (Library of Marine Samples, Korea Institute of Ocean Science and Technology)
Kyeong Yoon Kwak (Library of Marine Samples, Korea Institute of Ocean Science and Technology)
Zhun Li (Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology)
Wonchoel Lee (Department of Environmental Science, Hanyang University)
Hyeon Ho Shin (Library of Marine Samples, Korea Institute of Ocean Science and Technology)
Publication Information
Korean Journal of Environmental Biology / v.40, no.3, 2022 , pp. 290-300 More about this Journal
Abstract
A strain of Alexandrium species was established by isolating cells from Jangmok Bay, Korea. Its morphology and molecular phylogeny based on LSU rRNA gene sequences were examined. In addition, growth responses of this Alexandrium species to changes in temperature, salinity, and nutrient concentrations were investigated. This Alexandrium species from Jangmok Bay had a ventral pore on the 1', which was morphologically consistent with previously described Alexandrium tamarense and A. catenella. Phylogenetic analyses revealed that this isolate was assigned to A. pacificum (Group IV) within A. tamarense species complex. In growth experiments, relatively high growth rates and cell densities of A. pacificum (Group IV) were observed at 15℃ and 20℃. This species also grew under a wide range of salinity. This indicates that this Korean isolate of A. pacificum (Group IV) is a stenothermic and euryhaline species. In growth responses to changes in nutrient levels, enhanced growth rates and cell densities of A. pacificum(Group IV) were observed with additions of nitrate and phosphate. In particular, rapid uptakes of phosphate by A. pacificum (Group IV) were observed in experimental treatments, indicating that the increase in phosphate concentration could stimulate the growth of A. pacificum(Group IV).
Keywords
Alexandrium; morphology; phylogeny; nutrient; growth;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Juhl AR, V Velazquez and MI Latz. 2000. Effect of growth conditions on flow-induced inhibition of population growth of a redtide dinoflagellate. Limnol. Oceanogr. 45:905-915. https://doi.org/10.4319/lo.2000.45.4.0905   DOI
2 Kim YO, J Choi, SH Baek, M Lee and HM Oh. 2020. Tracking Alexandrium catenella from seed-bed to bloom on the southern coast of Korea. Harmful Algae 99:101922. https://doi.org/10.1016/j.hal.2020.101922   DOI
3 Kwon HK, JA Park, HS Yang and SJ Oh. 2013. Dominance and survival strategy of toxic dinoflagellate Alexandrium tamarense and Alexandrium catenella under dissolved inorganic nitrogen-limited conditions. J. Korean Soc. Mar. Environ. Energy 16:25-35. https://doi.org/10.7846/JKOSMEE.2013.16.1.25   DOI
4 Lee CK, OH Lee and SG Lee. 2005a. Impacts of temperature, salinity, and irradiance on the growth of ten harmful algal bloom-forming microalgae isolated in Korean Coastal waters. The Sea 10:79-91.
5 Lee HO and MS Han. 2003. Spring bloom of Alexandrium tamarense in Chinhae Bay, Korea. Aquat. Microb. Ecol. 33:271-278. https://doi.org/10.3354/ame033271   DOI
6 Lee HO, NW Lee, T Katano and MS Han. 2006. Growth characteristics for toxic marine dinoflagellate Alexandrium catenella isolated from Jinhae Bay, Korea. Korean J. Environ. Biol. 24:147-154.
7 Lee WJ, K Shin, PG Jang, MC Jang and NJ Park. 2005b. Summer pattern of phytoplankton distribution at a station in Jangmok bay. Ocean Sci. J. 40:109-117. https://doi.org/10.1007/BF03022605   DOI
8 Leong SCY, M Maekawa and S Taguchi. 2010. Carbon and nitrogen acquisition by the toxic dinoflagellate Alexandrium tamarense in response to different nitrogen sources and supply modes. Harmful Algae 9:48-58. https://doi.org/10.1016/j.hal.2009.07.003   DOI
9 Li TS, RC Yu and MJ Zhou. 2011. Short-term effects of different nitrogen substances on growth and toxin production of dinoflagellate Alexandrium catenella Balech(strain ACDH). Harmful Algae 12:46-54. https://doi.org/10.1016/j.hal.2011.08.011   DOI
10 Lilly EL, KM Halanych and DM Anderson. 2007. Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae) 1. J. Phycol. 43:1329-1338. https://doi.org/10.1111/j.1529-8817.2007.00420.x   DOI
11 Murray SA, R Diwan, RJ Orr, GS Kohli and U John. 2015. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates. Mol. Phylogenet. Evol. 92:165-180. https://doi.org/10.1016/j.ympev.2015.06.017   DOI
12 Nam KT and SJ Oh. 2021. Influence of water temperature and salinity on the production of paralytic shellfish poisoning by toxic dinoflagellate Alexandrium catenella (Group I). Korean Soc. Mar. Environ. Saf. 27:119-126. https://doi.org/10.7837/kosomes.2021.27.1.119   DOI
13 Oh SJ, JA Park, HK Kwon, HS Yang and WA Lim. 2012. Ecophysiogical studies on the population dynamics of two toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella isolated from the Southern coast of Korea I. Effects of temperature and salinity on the growth. J. Korean Soc. Mar. Environ. Energy 15:133-141. https://doi.org/10.7846/JKOSMEE.2012.15.2.133   DOI
14 Oshima Y, M Hasegawa, T Yasumoto, G Hallegraeff and S Blackburn. 1987. Dinoflagellate Gymnodinium catenatum as the source of paralytic shellfish toxins in Tasmanian shellfish. Toxicon 25:1105-1111. https://doi.org/10.1016/0041-0101(87)90267-4   DOI
15 Paredes-mella J, D Verela, P Fernandez and O Espinoza-Gonzalez. 2020. Growth performance of Alexandrium catenella from the Chilean fjords under different environmental drivers: plasticity as a response to a highly variable environment. J. Plankton Res. 42:119-134. https://doi.org/10.1093/plankt/fbaa011   DOI
16 Shin HH, Z Li, ES Kim, JW Park and WA Lim. 2017. Which species, Alexandrium catenella (Group I) or A. pacificum (Group IV), is really responsible for past paralytic shellfish poisoning outbreaks in Jinhae-Masan Bay, Korea? Harmful Algae 68:31-39. https://doi.org/10.1016/j.hal.2017.07.006   DOI
17 Prud'homme van Reine WF. 2017. Report of the nomenclature committee for algae: 15. Taxon 66:191-192. https://doi.org/10.12705/661.16   DOI
18 Ronquist F and JP Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180   DOI
19 Shin HH, Z Li, D Reveillon, GA Rovillon, KN Mertens, P Hess, HJ Kim, JH Lee, KW Lee, DK Kim, BS Park, J Hwang, MH Seo and WA Lim. 2020. Centrodinium punctatum (Dinophyceae) produces significant levels of saxitoxin and related analogs. Harmful Algae 100:101923 https://doi.org/10.1016/j.hal.2020.101923   DOI
20 Shin HH, Z Li, HJ Kim, BS Park, J Lee, AY Shin, TG Park, KW Lee, KH Han, JY Youn, KY Kwak, MH Seo, D Kim, MH Son, DJ Kim, K Shin and WA Lim. 2021. Alexandrium catenella (Group I) and A. pacificum (Group IV) cyst germination, distribution, and toxicity in Jinhae-Masan Bay, Korea. Harmful Algae 110:102122. https://doi.org/10.1016/j.hal.2021.102122   DOI
21 Smayda TJ. 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton bloom in the sea. Limnol. Oceanogr. 42:1137-1153. https://doi.org/10.4319/lo.1997.42.5_part_2.1137   DOI
22 Smayda TJ. 2000. Ecological features of harmful algal blooms in coastal upwelling ecosystems. Afr. J. Mar. Sci. 22:219-253. https://doi.org/10.2989/025776100784125816   DOI
23 Sommer U. 1989. The role of competition for resources in phytoplankton succession. pp. 57-106. In: Plankton Ecology: Succession in Plankton Communities. Springer. Berlin. https://doi.org/10.1007/978-3-642-74890-5_3   DOI
24 Wang DZ and DP Hsieh. 2002. Effects of nitrate and phosphate on growth and C2 toxin productivity of Alexandrium tamarense CI01 in culture. Mar. Pollut. Bull. 45:286-289. https://doi.org/10.1016/S0025-326X(02)00183-2   DOI
25 Takano Y and T Horiguchi. 2006. Acquiring scanning electron microscopical, light microscopical and multiple gene sequence data from a single dinoflagellate cell 1. J. Phycol. 42:251-256. https://doi.org/10.1111/j.1529-8817.2006.00177.x   DOI
26 Taylor FJR, Y Fukuyo, J Larsen and GM Hallegrae. 2003. Taxonomy of harmful dinoflagellates. pp. 389-432. In: Manual on Harmful Marine Microalgae (Hallegrae GM, DM Anderson and AD Cembella eds.). IOC-UNESCO. Paris.
27 Tilman D. 1982. Resource Competition and Community Structure. Princeton University Press. Princeton, NJ.
28 Yamamoto T and K Tarutani. 1997. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Japan. Jpn. J. Phycol. 45:95-101.
29 Yamamoto T, Y Yoshizu and K Tarutani. 1995. Effect of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Mikawa Bay, Japan. Jpn. J. Phycol. 43:91-98. https://doi.org/10.4490/ALGAE.2004.19.4.293   DOI
30 Anderson DM, DM Kulis, GJ Doucette, JC Gallagher and E Balech. 1994. Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastern United States and Canada. Mar. Biol. 120:467-478. https://doi.org/10.1007/BF00680222   DOI
31 Anderson DM, TA Alpermann, AD Cembella, Y Collos, E Masseret and M Montresor. 2012. The globally distributed genus Alexandrium, Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 12:10-35. https://doi.org/10.1016/j.hal.2011.10.012   DOI
32 Darriba D, GL Taboada, R Doallo and D Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772. https://doi.org/10.1038/nmeth.2109   DOI
33 Anderson DM. 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coastal Manage. 52:342-347. https://doi.org/10.1016/ocecoaman.2009.04.006   DOI
34 Balech E. 1995. The Genus Alexandrium Halim (Dinoflagellata). Sherkin Island Marine Station. Cork, Ireland.
35 Bui QTN, H Kim, H Park and JS Ki. 2021. Salinity affects saxitoxins (STXs) toxicity in the dinoflagellate Alexandrium pacificum, with low transcription of SXT-biosynthesis genes sxtA4 and sxtG. Toxins 13:733. https://doi.org/10.3390/toxins13100733   DOI
36 Elmgren R and U Larsson. 2001. Nitrogen and the Baltic Sea: managing nitrogen in relation to phosphorus. Sci. World 1:371-377. https://doi.org/10.1100/tsw.2001.291   DOI
37 Guillard RRL. 1973. Division rates. In: Handbook of Phycological Methods: Culture Methods and Growth Measurements (Stein JR ed.). Cambridge University Press. Cambridge, UK.
38 Guindon S and O Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704. https://doi.org/10.1080/10635150390235520   DOI
39 Hallegraeff GM. 2003. Harmful algal blooms: a global overview. pp. 25-50. In: Manual on Harmful Marine Microalgae. UNESCO Publishing. https://doi.org/10.25607/OBP-1370   DOI
40 Han MS, JK Jeon and YO Kim. 1992. Occurrence of dinoflagellate Alexandrium tamarense, a causative organism of paralytic shellfish poisoning in Chinhae Bay, Korea. J. Plankton Res. 14:1581-1592. https://doi.org/10.1093/plankt/14.11.1581   DOI
41 John U, RW Litaker, M Montresor, S Murray, ML Brosnahan and DM Anderson. 2014. Formal revision of the Alexandrium tamarense species complex (Dinophyceae) taxonomy: The introduction of five species with emphasis on molecular-based (rDNA) classification. Protist 165:779-804. https://doi.org/10.1016/j.protis.2014.10.001   DOI
42 Harada T, Y Oshima, H Kamiya and T Yasumoto. 1982. Confirmation of paralytic shellfish toxins in the dinoflagellate Pyrodinium bahamense var. compressa and bivalves in Palau. Bull. Jpn. Soc. Sci. Fish. 48:821-825. https://doi.org/10.2331/suisan.48.821   DOI