Browse > Article
http://dx.doi.org/10.11626/KJEB.2022.40.3.255

Molecular characterization of juvenile hormone signaling pathway-related genes in the brackish water flea Diaphanosoma celebensis  

Hayoung Cho (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
Jewon Yoo (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
Young-Mi Lee (Department of Biotechnology, College of Convergence Engineering, Sangmyung University)
Publication Information
Korean Journal of Environmental Biology / v.40, no.3, 2022 , pp. 255-266 More about this Journal
Abstract
In crustaceans, molting is regulated by interactions between ecdysteroid and juvenile hormone (JH) signaling pathway-related genes. Unlike the ecdysteroid signaling pathway, little information on the role of JH signaling pathway-related genes in molting is available in zooplanktonic crustaceans. In this study, three genes (juvenile hormone acid O-methyltransferase (JHAMT), methoprene-tolerant (Met), and juvenile hormone epoxide hydrolase (JHEH)) which are involved in the synthesis, receptor-binding, and degradation of JH were identified using sequence and phylogenetic analysis in the brackish water flea, Diaphanosoma celebensis. Transcriptional changes in these genes during the molting cycle in D. celebensis were analyzed. Sequence and phylogenetic analysis revealed that these putative proteins may be functionally conserved along with those of insects and other crustaceans. In addition, the expression of the three genes was correlated with the molting cycle of D. celebensis, indicating that these genes may be involved in the synthesis and degradation of JH, resulting in normal molting. This study will provide information for a better understanding of the role of JH signaling pathway-related genes during the molting process in Cladocera.
Keywords
Juvenile hormone pathway; brackish water flea; gene expression; molting cycle; sequence analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chen X, Q Gao, H Cheng, F Peng, C Wang and B Xu. 2021. Molecular cloning and expression pattern of the juvenile hormone epoxide hydrolase gene from the giant freshwater prawn Macrobrachium rosenbergii during larval development and the moult cycle. Aquac. Res. 52:3890-3899. https://doi.org/10.1111/are.15233   DOI
2 Daimon T and T Shinoda. 2013. Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotechnol. Appl. Biochem. 60:82-91. https://doi.org/10.1002/bab.1058   DOI
3 Defelipe LA, E Dolghih, AE Roitberg, M Nouzova, JG Mayoral, FG Noriega and AG Turjanski. 2011. Juvenile hormone synthesis: "esterify then epoxidize" or "epoxidize then esterify"? Insights from the structural characterization of juvenile hormone acid methyltransferase. Insect Biochem. Mol. Biol. 41:228-235. https://doi.org/10.1016/j.ibmb.2010.12.008   DOI
4 Dubrovsky EB. 2005. Hormonal cross talk in insect development. Trends Endocrinol. Metab. 16:6-11. https://doi.org/10.1016/j.tem.2004.11.003   DOI
5 Gilbert LI, NA Granger and RM Roe. 2000. The juvenile hormones: historical facts and speculations on future research directions. Insect Biochem. Mol. Biol. 30:617-644. https://doi.org/10.1016/s0965-1748(00)00034-5   DOI
6 Giraudo M, M Douville, G Cottin and M Houde. 2017. Transcriptomic, cellular and life-history responses of Daphnia magna chronically exposed to benzotriazoles: Endocrine-disrupting potential and molting effects. PLoS One 12:e0171763. https://doi.org/10.1371/journal.pone.0171763   DOI
7 Guo E, Q He, S Liu, L Tian, Z Sheng, Q Peng, J Guan, M Shi, K Li and LI Gilbert. 2012. MET is required for the maximal action of 20-hydroxyecdysone during Bombyx metamorphosis. PLoS One 7:e53256. https://doi.org/10.1371/journal.pone.0053256   DOI
8 Guo P, Y Zhang, L Zhang, H Xu, H Zhang, Z Wang, Y Jiang, D Molloy, P Zhao and Q Zia. 2021. Structural basis for juvenile hormone biosynthesis by the juvenile hormone acid methyltransferase. J. Biol. Chem. 297:101234. https://doi.org/10.1016/j.jbc.2021.101234   DOI
9 Hui JHL, A Hayward, WG Bendena, T Takahashi and SS Tobe. 2010. Evolution and functional divergence of enzymes involved in sesquiterpenoid hormone biosynthesis in crustaceans and insects. Peptides 31:451-455. https://doi.org/10.1016/j.peptides.2009.10.003   DOI
10 Hyde CJ, A Elizur and T Ventura. 2019. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J. Steroid Biochem. Mol. Biol. 185:172-183. https://doi.org/10.1016/j.jsbmb.2018.08.012   DOI
11 In S, H Cho and YM Lee. 2021. Identification of ecdysteroid pathway-related genes and their transcriptional modulation in the brackish water flea Diaphanosoma celebensis exposed to bisphenol analogs. Toxicol. Environ. Health Sci. 13:261-268. https://doi.org/10.1007/s13530-021-00103-8   DOI
12 In S, H Cho, KW Lee, EJ Won and YM Lee. 2020. Cloning and molecular characterization of estrogen-related receptor(ERR) and vitellogenin genes in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A and its structural analogues. Mar. Pollut. Bull. 154:111063. https://doi.org/10.1016/j.marpolbul.2020.111063   DOI
13 In S, HW Yoon, JW Yoo, H Cho, RO Kim and YM Lee. 2019. Acute toxicity of bisphenol A and its structural analogues and transcriptional modulation of the ecdysone-mediated pathway in the brackish water flea Diaphanosoma celebensis. Ecotox. Environ. Safe. 179:310-317. https://doi.org/10.1016/j.ecoenv.2019.04.065   DOI
14 Jiang M, S Lu and Y Zhang. 2017. Characterization of juvenile hormone related genes regulating cantharidin biosynthesis in Epicauta chinensis. Sci. Rep. 7:2308-2311. https://doi.org/10.1038/s41598-017-02393-w   DOI
15 Kim DH, BS Choi, HM Kang, JC Park, MS Kim, A Hagiwara and JS Lee. 2021. The genome of the marine water flea Diaphanosoma celebensis: Identification of phase I, II, and III detoxification genes and potential applications in marine molecular ecotoxicology. Comp. Biochem. Physiol. D-Genomics Proteomics 32:100787. https://doi.org/10.1016/j.cbd.2020.100787   DOI
16 Jindra M, SR Palli and LM Riddiford. 2013. The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58:181-204. https://doi.org/10.1146/annurev-ento120811-153700   DOI
17 Kato Y, K Kobayashi, S Oda, N Tatarazako, H Watanabe and T Iguchi. 2007. Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna. J. Endocrinol. 193:183-194. https://doi.org/10.1677/JOE-06-0228   DOI
18 Kim BM, S Kang, RO Kim, JH Jung, KW Lee, JS Rhee and YM Lee. 2018. De novo transcriptome assembly of brackish water flea Diaphanosoma celebensis based on short-term cadmium and benzo[a]pyrene exposure experiments. Hereditas 155:36. https://doi.org/10.1186/s41065-018-0075-3   DOI
19 Lee KJ, RD Watson and RD Roer. 1998. Moult-inhibiting hormone mRNA levels and ecdysteroid titer during a moult cycle of the blue crab, Callinectes sapidus. Biochem. Biophys. Res. Commun. 249:624-627. https://doi.org/10.1006/bbrc.1998.9215   DOI
20 Lee YM, H Cho, RO Kim, S In, SJ Kim and EJ Won. 2021. Validation of reference genes for quantitative real-time PCR in chemical exposed and at different age's brackish water flea Diaphanosoma celebensis. Sci. Rep. 11:23691. https://doi.org/10.1038/s41598-021-03098-x   DOI
21 Li G, Q Sun, X Liu, J Zhang, W Dou, J Niu and J Wang. 2019. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. Exp. Appl. Acarol. 78:361-372. https://doi.org/10.1007/s10493-019-00396-y   DOI
22 Mackert A, K Hartfelder, MMG Bitondi and ZLP Simoes. 2010. The juvenile hormone (JH) epoxide hydrolase gene in the honey bee (Apis mellifera) genome encodes a protein which has negligible participation in JH degradation. J. Insect Physiol. 56:1139-1146. https://doi.org/10.1016/j.jinsphys.2010.03.007   DOI
23 Li M, EA Mead and JS Zhu. 2011. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc. Natl. Acad. Sci. U.S.A. 108:638-643. https://doi.org/10.1073/pnas.1013914108   DOI
24 Li W, ZY Huang, F Liu, Z Li, L Yan, S Zhang, S Chen, B Zhong and S Su. 2013. Molecular cloning and characterization of juvenile hormone acid methyltransferase in the honey bee, Apis mellifera, and its differential expression during caste differentiation. PloS One 8:e68544. https://doi.org/10.1371/journal.pone.0068544   DOI
25 Li YX, D Wang, WL Zhao, JY Zhang, XL Kang, YL Li and XF Zhao. 2021. Juvenile hormone induces methoprene-tolerant 1 phosphorylation to increase interaction with Taiman in Helicoverpa armigera. Insect Biochem. Mol. Biol. 130:103519. https://doi.org/10.1016/j.ibmb.2021.103519   DOI
26 Marcial HS and A Hagiwara. 2007. Multigenerational effects of 17β-estradiol and nonylphenol on euryhaline cladoceran Diaphanosoma celebensis. Fish. Sci. 73:324-330. https://doi.org/10.1111/j.1444-2906.2007.01338.x   DOI
27 Martin JL and FM McMillan. 2002. SAM (dependent) I AM: The S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol. 12:783-793. https://doi.org/10.1016/S0959-440X(02)00391-3   DOI
28 Minakuchi C, T Namiki, M Yoshiyama and T Shinoda. 2008. RNAimediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum. FEBS J. 275:2919-2931. https://doi.org/10.1111/j.1742-4658.2008.06428.x   DOI
29 Miyakawa H, K Toyota, I Hirakawa, Y Ogino, S Miyagawa, S Oda, N Tatarazako, T Miura, JK Colbourne and T Iguchi. 2013. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat. Commun. 4:1856. https://doi.org/10.1038/ncomms2868   DOI
30 Miura K, M Oda, S Makita and Y Chinzei. 2005. Characterization of the Drosophila Methoprene-tolerant gene product: Juvenile hormone binding and ligand dependent gene regulation. FEBS J. 272:1169-1178. https://doi.org/10.1111/j.1742-4658.2005.04552.x   DOI
31 Miyakawa H, T Sato, Y Song, KE Tollefsen and T Iguchi. 2018. Ecdysteroid and juvenile hormone biosynthesis, receptors and their signaling in the freshwater microcrustacean Daphnia. J. Steroid Biochem. Mol. Biol. 184:62-68. https://doi.org/10.1016/j.jsbmb.2017.12.006   DOI
32 Nakagawa Y and VC Henrich. 2009. Arthropod nuclear receptors and their role in molting. FEBS J. 276: 6128-6157. https://doi.org/10.1111/j.1742-4658.2009.07347.x   DOI
33 Niwa R, T Niimi, N Honda, M Yoshiyama, K Itoyama, H Kataoka and T Shinoda. 2008. Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem. Mol. Biol. 38:714-720. https://doi.org/10.1016/j.ibmb.2008.04.003   DOI
34 Palli SR, TR Ladd, WL Tomkins, S Shu, SB Ramaswamy, Y Tanaka, B Arif and A Retnakaran. 2000. Choristoneura fumiferana entomopoxvirus prevents metamorphosis and modulates juvenile hormone and ecdysteroid titers. Insect Biochem. Mol. Biol. 30:869. https://doi.org/10.1016/S0965-1748(00)00060-6   DOI
35 Riddiford LM, K Hiruma, X Zhou and CA Nelson. 2003 Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 33:1327-1338. https://doi.org/10.1016/j.ibmb.2003.06.001   DOI
36 Wen D, C Rivera-Perez, M Abdou, Q Jia, Q He, X Liu, O Zyann, J Xu, WG Bendena, SS Tobe, FG Noriega, SR Palli, J Wang and S Li. 2015. Methyl farnesoate plays a dual role in regulating Drosophila metamorphosis. PLoS Genet. 11:e1005038. https://doi.org/10.1371/journal.pgen.1006559   DOI
37 Rivera-Perez C, M Nouzova, I Lamboglia and FG Noriega. 2014. Metabolic analysis reveals changes in the mevalonate and juvenile hormone synthesis pathways linked to the mosquito reproductive physiology. Insect Biochem. Mol. Biol. 51:1-9. https://doi.org/10.1016/j.ibmb.2014.05.001   DOI
38 Shinoda T and K Itoyama. 2003. Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis Proc. Natl. Acad. Sci. U.S.A. 100:11986-11991. https://doi.org/10.1073/pnas.2134232100   DOI
39 Sin YW, NJ Kenny, Z Qu, KW Chan, KWS Chan, SPS Cheong, RWT Leung, TF Chan, WG Bendena, KH Chu, SS Tobe and JHL Hui. 2015. Identification of putative ecdysteroid and juvenile hormone pathway genes in the shrimp Neocaridina denticulate. Gen. Comp. Endocrinol. 214:167-176. https://doi.org/10.1016/j.ygcen.2014.07.018   DOI
40 Wen R, B Wang, B Wang and L Ma. 2018. Characterization and expression profiles of juvenile hormone epoxide hydrolase from Lymantria dispar (Lepidoptera: Lymantridae) and RNA interference by ingestion. J. Insect Sci. 18:13. https://doi.org/10.1093/jisesa/iey002   DOI
41 Yamada T, C Morisseau, JE Maxwell, MA Argiriadi, DW Christianson and BD Hammock. 2000. Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase. J. Biol. Chem. 275:23082-23088. https://doi.org/10.1074/jbc.M001464200   DOI
42 Zhang QR, WH Xu, FS Chen and S Li. 2005. Molecular and biochemical characterization of juvenile hormone epoxide hydrolase from the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 35:153-164. https://doi.org/10.1016/j.ibmb.2004.10.010   DOI
43 Arand M, A Cronin, M Adamska and F Oesch. 2005. Epoxide hydrolases: structure, function, mechanism, and assay. Methods Enzymol. 400:569-588. https://doi.org/10.1016/S0076-6879(05)00032-7   DOI
44 Zhou K, N Jia, C Ju, YL Jiang, JP Yang, Y Chen, S Li, WF Li and CZ Zhou. 2014. Crystal structure of juvenile hormone epoxide hydrolase from the silkworm Bombyx mori. Proteins 82:3224-3229. https://doi.org/10.1002/prot.24676   DOI
45 Zhu J, JM Busche and X Zhang. 2010. Identification of juvenile hormone target genes in the adult female mosquitoes. Insect Biochem. Mol. Biol. 40:23-29. https://doi.org/10.1016/j.ibmb.2009.12.004   DOI
46 Zitnan D, YJ Kim, I Zitnanova, L Roller and ME Adams. 2007. Complex steroid-peptide-receptor cascade controls insect ecdysis. Gen. Comp. Endocrinol. 153:88-96. https://doi.org/10.1016/j.ygcen.2007.04.002   DOI
47 Chang ES, MJ Bruce and SL Tamone. 1993. Regulation of crustacean molting: A multi-hormonal system. Am. Zool. 33:324-329. https://doi.org/10.1093/icb/33.3.324   DOI