Browse > Article
http://dx.doi.org/10.11626/KJEB.2020.38.4.616

Comparison of B and Q biotype distribution, insecticidal mortality, and TYLCV viruliferous rate between Korean and Chinese local populations of Bemisia tabaci  

Jeong, In-Hong (Crop Protection Division, National Institute of Agricultural Science, RDA)
Park, Bueyong (Crop Protection Division, National Institute of Agricultural Science, RDA)
Lee, Gwan-Seok (Crop Protection Division, National Institute of Agricultural Science, RDA)
Wu, Qiong (College of Chemistry and Pharmacy, Qingdao Agricultural University)
Li, Feifei (College of Chemistry and Pharmacy, Qingdao Agricultural University)
Zhang, Zhenxing (College of Chemistry and Pharmacy, Qingdao Agricultural University)
Zhu, Yongzhe (College of Chemistry and Pharmacy, Qingdao Agricultural University)
Publication Information
Korean Journal of Environmental Biology / v.38, no.4, 2020 , pp. 616-624 More about this Journal
Abstract
International trade is one of the primary ways that non-native species spread worldwide. Korea and China are geographically close and have a large mutual trade volume. To investigate the population movement of the invasive whitefly(Bemisia tabaci Gennadius) between the two countries, we compared the biotype distribution, insecticidal response, and the TYLCV(tomato yellow leaf curl virus) viruliferous rate of local populations collected in 2019. Based on the mitochondrial DNA COI sequences of B. tabaci, only the Q biotype was found in all populations in Korea, whereas the B biotype (14.3%) and Q biotype (85.7%) were found in China. In the haplotype composition of the B. tabaci Q biotype, only the Q1 group[Q1H1(79.8%) and Q1H2(20.2%)] was observed in China, but the Q1 group [Q1H1(1.7%) and Q1H2(97.5%)] and the Q2 group(only one individual) were found in Korea. The Korean populations showed high mortality(more than 80%) from 15 commercial insecticides, but the Chinese populations showed significantly low mortality from eight insecticides. No TYLCV infections were observed in the Korean populations while the average TYLCV viruliferous rate was 21.4% in the Chinese populations. Taken together, the results suggest that the population structures of B. tabaci in the two countries are different and may have different immigration histories.
Keywords
Bemisia tabaci Gennadius; population genetics; insecticidal response; viruliferous rate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hong KJ, JH Lee, GS Lee and S Lee. 2012. The status quo of invasive alien insect species and plant quarantine in Korea. J. Asia-Pac. Entomol. 15:521-532.   DOI
2 Kim GH, YS Lee, IH Lee and KS Ahn. 2000. Suceptibility of sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) to commercially registered insecticides in Korea. Korean J. Appl. Entomol. 4:51-58.
3 Abbott WS. 1925. A method of computing the effectiveness of an insecticide. J Econ. Entomol. 18:265-267.   DOI
4 Ahmad M, MI Arif and M Naveed. 2010. Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. J. Pest Sci. 83:409-420.   DOI
5 Chen W, DK Hasegawa, N Kaur, A Kilot, PV Pinheiro, J Luan, MC Stensmyr, Y Zheng, W Liu, H Sun, Y xu, Y Luo, A Kruse, X Yang, S Kontsedalov, G Lebedev, TW Fishier, DR Nelson, WB Hunter, JK Brown, G Jander, M Cilia, AE Douglas, M Ghanim, AM Simmons, WM Wintermantel, KS Ling and Z Fei. 2016. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 14:110-124.   DOI
6 Choi HS, SH Lee, MK Kim, HR Kwak and JS Kim. 2010. Occurrence of virus disease on major crops in 2009. Res. Plant Dis. 16:1-9.   DOI
7 Chu D, X Hu, C Gao, H Zhao, RL Nichols and X Li. 2012. Use of mitochondrial cytochrome oxidase I polymerase chain reaction-restriction fragment length polymorphism for identifying subclades of Bemisia tabaci Mediterranean group. J Econ. Entomol. 105:242-251.   DOI
8 Brown JK, DR Frohlich and RC Rosell. 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci of a species complex? Annu. Rev. Entomol. 40:511-534.   DOI
9 De Barro PJ and MZ Ahmed. 2011. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS One 6:e25579.   DOI
10 KTSPI. 2017. Major vegetable import and export trends. In: Trend Analysis Vol. 114 (YT Jo, JM Park and AY Kim, eds.). Korea Trade Statistics Promotion Institute. Seoul.
11 Lee W, Y Lee, S Kim, JH Lee, H Lee, S Lee and K Hong. 2016. Current status of exotic insect pests in Korea: comparing border interception and incursion during 1996-2014. J. Asia-Pac. Entomol. 19:1095-1101.   DOI
12 Kim E and Y Kim. 2014. Report on mixed occurrence of tobacco whitefly (Bemisia tabaci) biotypes B and Q in oriental melon farms in Kyungpook Province, Korea. Korean J. Appl. Entomol. 53:466-472.
13 Lee W, J Park, GS Lee, S Lee and S Akimoto. 2013. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8:e63817.   DOI
14 Luo C, CM Jones, G Devine, F Zhang, I Denholm and K Gorman. 2010. Insecticide resistance in Bemisia tabaci biotype Q(Hemi-ptera: Aleyrodidae) from China. Crop Prot. 29:429-434.   DOI
15 Kwon DH, SJ Kim, TJ Kang, JH Lee and DH Kim. 2017. Analysis of the molecular phylogenetics and genetic structure of an invasive alien species, Ricania shantungensis, in Korea. J. Asia-Pac. Entomol. 20:901-906.   DOI
16 Lee ML, SB Ahn and WS Cho. 2000. Morphological characteristics of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and discrimination of their biotypes in Korea by DNA Markers. Korean J. Appl. Entomol. 39:5-12.
17 Lee W and GS Lee. 2017. Reassessment of the taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) based on mitochondrial COI gene sequences. Korean J. Appl. Entomol. 52:107-120.
18 Lee SW, SG Lee, JJ Kim, CK Park, HH Park, KH Kim and BY Choi. 2010. Neoniconoid resistance of Bemisia tabaci local populations and its clustering analysis. p. 63. In: Spring Symposium of the Korean Society of Pesticide Science. Yesan, Korea.
19 Lee Y, J Kim, S Hong, J Park and H Park. 2012. Occurrence of sweet-potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and its response to insecticide in Gyeonggi area. Korean J. Appl. Entomol. 51:377-382.   DOI
20 Li HR, HP Pan, YL Tao, YJ Zhang and D Chu. 2017. Population genetics of an alien whitefly in China: implications for its dispersal and invasion success. Sci. Rep. 7:2228-2235.   DOI
21 Liu TX. 2004. Toxicity and efficacy of spiromesifen, a tetronic acid insecticide, against sweet potato whitefly (Homoptera: Aleyrodidae) on melons and collards. Crop Prot. 23:505-513.   DOI
22 Mahadav A, S Kontsedalov, H Czosne and M Ghanim. 2009. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochem. Mol. Biol. 39:668-676.   DOI
23 Kwon DH, M Kim, H Kim, Y Lee, KJ Hong, SH Lee and S Lee. 2015. Estimation of genetic divergence based on mitochondrial DNA variation for an invasive alien species, Metcalfa pruinosa (Say), in Korea. J. Asia-Pac. Entomol. 18:447-451.   DOI
24 Mota-Sanchez D and JC Wise. 2020. The arthropod pesticide resistance database. Michigan State University. http://www.pesticideresistance.org
25 Pan H, EL Preissner, D Chu, S Wang, Q Wu, Y Carriere, X Zhou and Y Zhang. 2015. Insecticides promote viral outbreaks by altering herbivore competition. Ecol. Appl. 25:1585-1595.   DOI
26 Perring TM. 2001. The Bemisia tabaci species complex. Crop Prot. 20:725-737.   DOI
27 Perring TM, AD Cooper, RJ Rodriguez, CA Farrar and TS Bellows. 1993. Identification of a whitefly species by genomic and behavioral studies. Science 259:74-77.   DOI
28 Qu WM, N Liang, ZK Wu, YG and D Chu. 2020. Minimum sample sizes for invasion genomics: Empirical investigation in an invasive whitefly. Ecol. Evol. 1:38-49.
29 Teng X, FH Wan and D Chu. 2010. Bemisia tabaci biotype Q dominates other biotypes across China. Fla. Entomol. 93:363-368.   DOI
30 Dinsdale A, L Cook, C Riginos, YM Buckley and P De Barro. 2010. Refined global analysis of Bemisa tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 103:196-208.   DOI
31 Kil EJ, J Park, H Lee, J Kim, HS Choi, KY Lee, CS Kim and S Lee. 2014. Lamium amplexicaule (Lamiaceae): a weed reservoir for tomato yellow leaf curl virus (TYLCV) in Korea. Arch. Virol. 159:1305-1311.   DOI
32 De Barro PJ, F Driver, JW Trueman and J Curran. 2000. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol. Phylogenet. Evol. 16:29-36.   DOI
33 De Barro PJ, SS Liu, LM Boykin and AB Dinsdale. 2011. Species status of Bemisia tabaci. Annu. Rev. Entomol. 56:1-19.   DOI
34 Devine GJ and I Delholm. 1998. An unconventional use of piperonyl butoxide of managing the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Bull. Entomol. Res. 88:601-610.   DOI
35 Ghanim M, I Sobol, M Ghanim and H Czosnek. 2007. Horizontal transmission of begomoviruses between Bemisia tabaci biotypes. Arthropod-Plant Interact. 1:195-204.   DOI
36 Ha TK, IC Hwang, JK Kim, YH Song, GH Kim and YM Yu. 2003. Toxicities and control effect of three insecticides to greenhouse whitefly, Traleurodes vaporariorum and sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Korean J. Pesticide Sci. 3:29-36.
37 Horowitz AR, S Kontsedalov, V Khasdan and I Ishaaya. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58:216-225.   DOI
38 Hulme PE. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:10-18.   DOI