Browse > Article
http://dx.doi.org/10.11626/KJEB.2020.38.4.497

Altitudinal diversity and distribution of butterflies inhabiting Mt. Jirisan, South Korea  

Lee, Sanghun (Team of Climate Change Research, National Institute of Ecology)
Ahn, Nahyun (Team of Climate Change Research, National Institute of Ecology)
An, Jeong-Seop (Department of Knowledge-based Culture, National Institute of Ecology)
Publication Information
Korean Journal of Environmental Biology / v.38, no.4, 2020 , pp. 497-506 More about this Journal
Abstract
This study surveyed the altitudinal diversity and distribution of butterflies inhabiting Mt. Jirisan. Field surveys were conducted thrice (May, June, and July) using a line transect method along four routes in 2015. During the survey, a total of five families, 58 species, and 769 individuals were collected. Of the species collected, the majority belonged to the family Nymphalidae (28 species), followed by Hesperiidae (nine species), Pieridae (eight species), Lycaenidae (seven species), and Papilionidae (six species). As for the individuals, Pieridae accounted for the largest number (333 individuals), followed by Nymphalidae (309 individuals), Lycaenidae (63 individuals), Hesperiidae (33 individuals), and Papilionidae (31 individuals). A cluster analysis performed on the butterfly species distinguished three altitude zones. The butterflies showed different ecological traits in each of the altitude zones. Analysis of the altitudes of the habitats of eight dominant species revealed that each species inhabited a particular altitude. This study confirmed the hypothesis that continuous monitoring will identify changes in the altitudinal distribution and diversity of butterflies on Mt. Jirisan in response to climate change.
Keywords
butterfly; diversity; distribution; elevation; climate change;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Kwon TS, BK Byun, SH Kang, SS Kim and BW Lee. 2008. Analysis on changes, and problems in phenology of butterflies in Gwangneung forest. Korean J. Appl. Entomol. 47:209-216.   DOI
2 Kwon TS, SS Kim and CM Lee. 2013. Local change of butterfly species in response to global warming and reforestation in Korea. Zool. Stud. 52:47.   DOI
3 Maicher V, S Safian, M Murkwe, S Delabye, L Przybylowicz, P Potocky, IN Kobe, S Janecek, JEJ Mertens, EB Fokam, T Pyrcz, J Dolezal, J Altman, D Horak, K Fiedler and R Tropek. 2019. Seasonal shifts of biodiversity patterns and species' elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47:342-354.
4 Mihoci I, V Hrsak, M Kucinic, VM Stankovic, A Delic and N Tvrtkovic. 2011. Butterfly diversity and biogeography on the Croatian karst mountain Biokovo: Vertical distribution and preference for altitude and aspect? Eur. J. Entomol. 108:623-634.   DOI
5 Parmesan C, N Ryrholm, C Stefanescu, JK Hill, CD Thomas, H Descimon, B Huntley, L Kaila, J Kullberg, T Tammaru, WJ Tennent, JA Thomas and M Warren. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579-583.   DOI
6 Parmesan C and G Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42.   DOI
7 Schweiger O, J Settele, O Kudrna, S Klotz and I Kuhn. 2008. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472-3479.   DOI
8 Shin YH. 1989. Colored Atlas of Butterflies in Korea. Academy Publishing. Seoul.
9 Smith TM and RL Smith. 2009. Elements of Ecology (7th edition). Benjamin Cummings. Boston, MA.
10 Kim TG, YH Cho, KH Song, YJ Park and JG Oh. 2016. Assessing the influence of topographic factors on the distribution of Aporia crataegi (Lepidoptera: Pieridae) in Northeast Asia using a MaxEnt modeling approach. Korean J. Ecol. Environ. 49:142-146.   DOI
11 McCune B and MJ Mefford. 1999. PC-ORD: multivariate analysis of ecological data; Version 4 for Windows [User's Guide]. MjM software design. Gleneden Beach, OR.
12 Franco AMA, JK Hill, C Kitschke, YC Collingham, DB Roy, R Fox, B Huntley and CD Thomas. 2006. Impacts of climate warming and habitat loss on extinctions at species' low-latitude range boundaries. Glob. Change Biol. 12:1545-1553.   DOI
13 Pianka ER. 1994. Evolutionary Ecology. Harper Collins. New York.
14 Altermatt, F. 2010. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. B-Biol. Sci. 277:1281-1287.   DOI
15 Cerrato C, E Rocchia, M Brunetti, R Bionda, B Bassano, A Provenzale, S Bonelli and R Viterbi. 2019. Butterfly distribution along altitudinal gradients temporal changes over a short time period. Nat. Conserv. 34:91-118.   DOI
16 Choi SW and JS An. 2010. Altitudinal distribution of moths (Lepidoptera) in Mt. Jirisan National Park, South Korea, Eur. J. Entomol. 107:229-245.   DOI
17 Warren MS, JK Hill, JA Thomas, J Asher, R Fox, B Huntley, DB Roy, MG Telfer, S Jeffcoate, P Harding, G Jeffcoate, SG Willis, JN Greatorex-Davies, D Moss and CD Thomas. 2001. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65-69.   DOI
18 Choi SW and JS An. 2015. Pattern of change of the local butterfly community in a rural area of Southwestern part of Korea. Korean J. Environ. Biol. 33:53-62.   DOI
19 Storch D, M Konvicka, J Benes, J Martinkova and KJ Gaston. 2003. Distribution patterns in butterflies and birds of the Czech Republic: separating effects of habitat and geographical position. J. Biogeogr. 30:1195-1205.   DOI
20 Choi SW, DH Nho, SS Kim and KJ Hong. 2016. Spatio-temporal moth diversity (Insecta: Lepidoptera) of Mt. Baegun-san, Gwangyang, Jeonnam. Korean J. Ecol. Environ. 49:62-66.   DOI
21 Kim DS, KS Oh, SJ Park, SS Choi and SH Lee. 2015. Comparison of butterfly communities between Guryongryeong and Gojigkyeong of the Baekdudaegan Mountain Range and the changes in their distribution. Korean J. Appl. Entomol. 54:233-245.   DOI
22 Kim SS, CM Lee and TS Kwon. 2011. The butterfly community in Is. Guleopdo, Korea and the dominance of the endangered species Argynnis nerippe. Korean J. Appl. Entomol. 50:115-123.   DOI
23 Kim YS. 2002. Illustrated Book of Korean Butterflies in Color. Kyohaksa. Seoul.
24 Kwon TS, SS Kim, JH Chun, BK Byun, JH Lim and JH Shin. 2010. Changes in butterfly abundance in response to global warming and reforestation. Environ. Entomol. 39:337-345.   DOI
25 Konvicka M, CV Mihaly, L Rakosy, J Benes and T Schmitt. 2014. Survival of cold-adapted species in isolated mountains: the population genetics of the Sudeten ringlet, Erebia sudetica sudetica, in the Jesenik Mts, Czech Republic. J. Insect Conserv. 18:153-161.   DOI
26 Pollard E and TJ Yates. 1994. Monitoring Butterflies for Ecology and Conservation. Conservation Biology Series. Chapman & Hall. London.
27 Zografou K, A Grill, RJ Wilson, JM Halley, GC Adamidis and V Kati. 2019. Butterfly phenology in Mediterranean mountains using space-for-time substitution. Ecol. Evol. 10:928-939.
28 Seaby RM and PA Henderson. 2006. Species diversity and richness version 4. Pisces Conservation Ltd. Lymington, England.
29 Molina-Martinez A, JL Leon-Cortes, HM Regan, OT Lewis, D Navarrete, U Caballero and A Luis-Martinez. 2016. Changes in butterfly distributions and species assemblages on a Neotropical mountain range in response to global warming and anthropogenic land use. Divers. Distrib. 22:1085-1098.   DOI
30 Korner C. 2007. The use of altitude in ecological research. Trends Ecol. Evol. 22:569-574.   DOI
31 Kim SS and YH Seo. 2012. Life Histories of Korean Butterflies. Sakyejul. Paju, Korea.
32 Walther GR, E Post, P Convey, A Menzel, C Parmesan, TJC Beebee, JM Fromentin, O Hoegh-Guldberg and F Bairlein. 2002. Ecological responses to recent climate change. Nature 416:389-395.   DOI
33 Matter SF, J Roland, N Keyghobadi and K Sabourin. 2003. The effects of isolation, habitat area and resources on the abundance, density and movement of the butterfly Parnassius smintheus. Am. Midl. Nat. 150:26-36.   DOI
34 Elzinga CL, DW Salzer and JW Willoughby. 2001. Monitoring Plant and Animal Populations. Blackwell Science. Hoboken, NJ.
35 Fiedler K and E Beck. 2008. Investigating gradients in ecosystem analysis. pp. 49-54. In: Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer. Berlin, Germany.
36 Hill JK, CD Thomas, R Fox, MG Telfer, SG Willis, J Asher and B Huntley. 2002. Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc. R. Soc. B-Biol. Sci. 269:2163-2171.   DOI
37 Kim DS, HB Yi, YJ Kwon and MS Woo. 2007. The butterfly community dynamics at Mt. Midong, Cheongwon-gun, Chungcheongbukdo, Korea. Korea J. Environ. Ecol. 25:319-325.
38 Kim DS, SJ Park, DS Kim, YB Cho, YD Lee, NH Ahn, KG Kim, HY Seo and JY Cha. 2014. Monitoring of the butterfly communities inhabited of Mt. Hallasan, Jeju island, Korea. Korean J. Environ. Ecol. 28:697-704.   DOI
39 Kim SS, HC Park and MA Kim. 1999. Monitoring the distribution and density of butterflies in Mt. Chugeum-san. J. Lepid. Soc. Kor. 12:7-15.
40 Konvicka M, J Benes, O Cizek, T Kuras and I Kleckova. 2016. Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains? Eur. J. Entomol. 113:295-301.   DOI
41 Kremen C. 1994. Biological inventory using target taxa: A case study of the butterflies of Madagascar. Ecol. Appl. 4:407-422.   DOI