Browse > Article
http://dx.doi.org/10.11626/KJEB.2017.35.4.648

Evaluation of Cellulolytic Enzyme Production by Indigenous Fungi in Korea  

Lee, Hanbyul (Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University)
Lee, Young Min (Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University)
Heo, Young Mok (Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University)
Lee, Jaejung (Division of Wood Chemistry and Microbiology, National Institute of Forest Science)
Kim, Jae-Jin (Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University)
Publication Information
Korean Journal of Environmental Biology / v.35, no.4, 2017 , pp. 648-653 More about this Journal
Abstract
The aim of this study was to select various fungal strains indigenous to Korea that have the potential to produce cellulases, including filter paper activity (FPase), $endo-{\beta}$-1,4-glucanase (EG), and ${\beta}-glucosidase$ (BGL). Among the 25 species of Ascomycetes and the 32 species of Basidiomycetes tested in this study, the Bjerkandera adusta KUC10565, Heterobasidion orientale KUC10556, Hyphoderma praetermissum KUC10609, and Trichoderma harzianum KUC1716 all exhibited remarkably high FPase activity. In addition, the T. harzianum KUC1716 showed high levels of EG and BGL activity. This strain has been selected for further study because of their enzymatic potential.
Keywords
${\beta}-glucosidase$; bioethanol; cellulase; endo-glucanase; filter paper assay;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jung PE, JJ Fong, MS Park, SY Oh, C Kim and YW Lim. 2014. Sequence validation for the identification of the white-rot fungi Bjerkandera in public sequence databases. J. Microbiol. Biotechnol. 24:1301-1307.   DOI
2 Kalra MK, MS Sidhu, DK Sandhu and RS Sandhu. 1984. Production and regulation of cellulases in Trichoderma harzianum. Appl. Microbiol. Biotechnol. 20:427-429.
3 Lee YM, H Lee, GH Kim and JJ Kim. 2011. Miniaturized enzyme production and development of micro-assays for cellulolytic and xylanolytic enzymes. J. Microbiol. Methods 86:124-127.   DOI
4 Ma L, J Zhang, G Zou, CS Wang and ZH Zhou. 2011. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb. Technol. 49:366-371.   DOI
5 Maeda RN, VI Serpa, VAL Rocha, RAA Mesquita, LMM Santa Anna, AM de Castro, CE Driemeier, N Pereira Jr. and I Polikarpov. 2011. Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem. 46:1196-1201.   DOI
6 Aust SD. 1995. Mechanisms of degradation by white rot fungi. Environ. Health Perspect. 103:59-61.   DOI
7 Bailey MJ. 1988. A note on the use of dinitrosalicylic acid for determining the products of enzymatic-reactions. Appl. Microbiol. Biotechnol. 29:494-496.   DOI
8 Baldrian P and V Valaskova. 2008. Degradation of cellulose by basidiomycetous fungi. Fems Microbiol. Rev. 32:501-521.   DOI
9 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428.   DOI
10 Maijala P, TC Harrington and M Raudaskoski. 2003. A peroxidase gene family and gene trees in Heterobasidion and related genera. Mycologia 95:209-221.   DOI
11 Ohkuma M, Y Maeda, T Johjima and T Kudo. 2001. Lignin degradation and roles of white rot fungi: Study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation. Riken Review. pp. 39-42.
12 Qian YC, LX Zhong, YH Hou, YB Qu and YH Zhong. 2016. Characterization and strain improvement of a hypercellulytic variant, Trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement. Front. Microbiol. 7:1349.
13 Seyis I and N Aksoz. 2005. Effect of carbon and nitrogen sources on xylanase production by Trichoderma harzianum 1073 D3. Int. Biodeterior. Biodegrad. 55:115-119.   DOI
14 Rubeena M, K Neethu, S Sajith, S Sreedevi, P Priji, KN Unni, MKS Josh, VV Jisha, S Pradeep and S Benjamin. 2013. Lignocellulolytic activities of a novel strain of Trichoderma harzianum. Adv. Biosci. Biotechnol. 4:214.   DOI
15 Benoliel B, FAG Torres and LMP de Moraes. 2013. A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura. SpringerPlus 2:656.   DOI
16 Berlin A, V Maximenko, N Gilkes and J Saddler. 2007. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng. 97:287-296.   DOI
17 Bumpus JA and SD Aust. 1987. Biodegradation of environmental-pollutants by the white rot fungus Phanerochaete chrysosporium: Involvement of the lignin degrading system. Bioessays 6:166-170.   DOI
18 Saha BC. 2004. Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides. Process Biochem. 39:1871-1876.   DOI
19 Schmidt O. 2006. Wood and tree fungi: biology, damage, protection, and use. Springer Science & Business Media, Berlin. pp. 96-102.
20 Senior DJ, PR Mayers and JN Saddler. 1989. Xylanase production by Trichodermaharzianum E58. Appl. Microbiol. Biotechnol. 32:137-142.   DOI
21 Singhania RR, AK Patel, RK Sukumaran, C Larroche and A Pandey. 2013. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127:500-507.   DOI
22 Singhania RR, RK Sukumaran, AK Patel, C Larroche and A Pandey. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46:541-549.   DOI
23 Ten Have R and PJM Teunissen. 2001. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101:3397-3413.   DOI
24 Teugjas H and P Valjamae. 2013. Selecting beta-glucosidases to support cellulases in cellulose saccharification. Biotechnol. Biofuels 6:105.   DOI
25 Theodore K and T Panda. 1995. Application of response surface methodology to evaluate the influence of temperature and initial pH on the production of beta-1,3-glucanase and carboxymethylcellulase from Trichoderma harzianum. Enzyme Microb. Technol. 17:1043-1049.   DOI
26 Xiao ZZ, R Storms and A Tsang. 2004. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol. Bioeng. 88:832-837.   DOI
27 Viterbo A, S Haran, D Friesem, O Ramot and I Chet. 2001. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. Fems Microbiol. Lett. 200:169-174.   DOI
28 Wang MY, ZH Li, X Fang, LS Wang and YB Qu. 2012. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production. Biotechnology in China Iii: Biofuels and Bioenergy. Springer Berlin Heidelberg. pp. 1-24.
29 Wu SH. 1997. New species and new records of Hyphoderma (Basidiomycotina) from Taiwan. Bot. Bul. Acad. Sin. 38: 63-72.
30 Youn HD, YC Hah and SO Kang. 1995. Role of laccase in lignin degradation by white-rot fungi. Fems Microbiol. Lett. 132:183-188.   DOI
31 Valencia EY and FS Chambergo. 2013. Mini-review: Brazilian fungi diversity for biomass degradation. Fungal Genet. Biol. 60:9-18.   DOI
32 Imran M, Z Anwar, M Irshad, MJ Asad and H Ashfaq. 2016. Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv. Enzyme Res. 4:44.   DOI
33 Coughlan MP. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 3:39-109.   DOI
34 Delabona PD, CS Farinas, MR da Silva, SF Azzoni and JGD Pradella. 2012. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour. Technol. 107:517-521.   DOI
35 Delabona PD, DJ Lima, D Robl, SC Rabelo, CS Farinas and JGD Pradella. 2016. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J. Ind. Microbiol. Biotechnol. 43:617-626.   DOI
36 Devendran S, AM Abdel-Hamid, AF Evans, M Iakiviak, IH Kwon, RI Mackie and I Cann. 2016. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides. Sci. Rep. 6:35342.   DOI
37 Ellila S, L Fonseca, C Uchima, J Cota, GH Goldman, M Saloheimo, V Sacon and M Siika-aho. 2017. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 10:30.   DOI
38 Ja'afaru MI. 2013. Screening of fungi isolated from environmental samples for xylanase and cellulase production. ISRN Microbiol. 2013:283423.
39 Juhasz T, Z Szengyel, K Reczey, M Siika-Aho and L Viikari. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40:3519-3525.   DOI