Browse > Article

Characteristics of Epilithic Diatom Communities and Physico-chemical Habitats in the Lake Imha Basin (Banbyeon Stream, Kilan Stream and Nakdong River)  

Kim, Yong-Jae (Department of Life Science, Daejin University)
Won, Doo-Hee (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.)
Publication Information
Korean Journal of Environmental Biology / v.29, no.3, 2011 , pp. 180-194 More about this Journal
Abstract
In this study, We were investigated the interrelationships between epilithic diatom communities and physico-chemical factors at Banbyeon stream, Gilan stream and Nakdong river in the Lake Imha basin from September 2008 to June 2009. Epilithic diatom communities were identified a total 120 taxa which were composed to 2 Orders, 3 Suborders, 7 Families, 22 Genera, 108 species and 12 varieties. The dominant species were 4 taxa, which were Achnanthes alteragracillima, A. convergens, A. minutissima and Fragilaria construens var. venter during the investigation periods at 8 sites. Correlation coefficients between epilithic diatom communities and physicochemical factors were from -0.94 to 0.97. Correlation coefficients (r) between turbidity, QHEI and density, species number and indices of diatom communities were from -0.18 to 0.42 which was showed lower values than the values of chemical factors. Correlation coefficients (r) between QHEI and Epilithic diatom communities were showed the low values. Correlation coefficients (r) between TP and diatom indices (DAIpo, TDI) were 0.79 and 0.78, respectively. Therefore, epilithic diatom communities were greatly influenced by TP.
Keywords
Banbyeon stream; Gilan stream; Lake Imha; Nakdong river; DAIpo; epilithic diatom; QHEI; TDI;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Watanabe T, K Asai and A Houki. 1990. Numerical simulation of organic pollution in flowing waters. Encyclopedia of Environmental control Technology, Vol. 4. Hazard Waste Containment and Treatment. Gulf Publ. Company, Huston, Texas. pp.251-281.
2 Waters TF. 1995. Sediment in stream: sources, biological effects and control. American Fisheries Society Monograph 7, Bethesda, Maryland.
3 Wetze RG. 2001. Limnology. Lake and River Ecosystems. 3rd. ed. Academic Press, San Diego, California.
4 Whitton BA and E Rott. 1996. Proceedings of an international Symposium on Use of Algae for Monitoring Rivers. 17-19 Sept. 1995. Austrian Ministry of Sci. Traffic and Arts, Innsbruck, Austria.
5 Sonneman JA, CJ Walsh, PF Breen and AK Sharpe. 2001. Effects of urbanization on stream of the Melbourne region, Victoria, Australia. II. Benthic diatom communities. Freshwater Biol. 46:553-565.   DOI   ScienceOn
6 Sousa WP. 1984. The role of disturbance in natural communities. Ann. Rev. Ecol. Syst. 15:353-391.   DOI   ScienceOn
7 Stepenuck KF, RL Crunkilton and L Wang. 2002. Impacts of urban land use on macroinvertebrate communities in southeastern Wisconsin streams. J. of the Amer. Water Resour. Assoc. 38:1041-1051.   DOI   ScienceOn
8 Stevenson RJ. 1997. Scale-dependent causal framwork and the consequences of benthic algal heterogenity. J. of North Amer. Benthol. Soc. 16:248-262.   DOI   ScienceOn
9 Stevenson RJ and Y Pan. 1999. Assessing environmental conditions in rivers and streams with diatoms. pp.11-41. In The Diatoms: Application for the Environmental and Earth Science (Stoemer E and JP Smol eds.). Cambridge Univ. Press.
10 Stoemer E and JP Smol. 1999. The diatoms: application for the environmental and earth sciences. Cambridge Univ. Press.
11 Townsend CR, MR Scarsbrook and S Doledec. 1997. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. J. N. Am. Benthol. Soc. 16:531-544.   DOI   ScienceOn
12 van Dam H. 1982. On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwig. 73:97-115.
13 Walker CE and Y Pan. 2006. Using diatom assemblages to assess urban stream conditions. Hydrobiol. 561:179-189.   DOI   ScienceOn
14 Wallace NC. 1955. The effect of temperature on the growth of some freshwater diatoms. Not. Nat., Acad. Nat. Sci. Phil. No. 280, 11pp.
15 Patrick R. 1971. The effects of increasing light and temperature on the structure of diatom communities. Limnol. Oceanogr. 16:405-421.   DOI   ScienceOn
16 Walsh CJ, AK Sharpe, PF Breen and JA Sonneman. 2001. Effects of urbanization on streams of the Melbourne region, Victoria, Australia. I. Benthic macroinvertebrate communities. Freshwater Biol. 46:535-551.   DOI   ScienceOn
17 Wang X. 2001. Integrating water-quality management and landuse planning in a watershed context. J. of Environ. Manag. 61:25-36.   DOI   ScienceOn
18 Ward JV. 1998. Riverine landscapes: biodiversity patterns, disturbance regimes and aquatic conservation. Biol. Conserv. 83:269-278.   DOI   ScienceOn
19 Patrick R. 1977. Ecology of freshwater diatoms and diatom communities. pp.285-332. In The Biology of Diatom (Werner D ed.). Univ. California Press.
20 Paul MJ and JL Meyer. 2001. Streams in the urban landscape. Annual Rew. of Ecol. and System. 32:333-365.   DOI   ScienceOn
21 Peterson CG and RJ Stevenson. 1992. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecol. 73:1445-1461.   DOI   ScienceOn
22 Plafkin JL, MT Barbour, KD Porter, SK Gross and RM Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001. U.S. EPA.
23 Rodhe W. 1948. Environmental requirements of freshwater plankton algae. Experimental studies in the ecology of phytoplankton. Symb. bot. upsal. 10:1-149.
24 Rott E and P Pfister. 2003. Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophical indication methods used in Europe. Algol. Stud. 110:91-115.   DOI
25 Roy AH, AD Rosemond, MJ Paul, DS Leigh and JB Wallace. 2003. Stream macroinvertebrate response to catchment urbanization (Georgia, USA). Freshwater Biol. 48:329-346.   DOI   ScienceOn
26 Salomoni SE, O Rocha, VL Callegro and EA Lobo. 2006. Epilithic diatoms as indicators of water quality in the Gravatai river, Rio Grande do Sul, Brazil. Hydrobiol. 559:233-246.   DOI   ScienceOn
27 Soininen J, R Paavola and T Muotka. 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecograp. 27:330-342.   DOI   ScienceOn
28 Schonfelder I, J Gelbrecht, J Schonfelder and CEW Steinberg. 2001. Relationship between littoral diatoms and their chemical environment in Northeastern German lakes and rivers. J. Phycol. 38:66-82.
29 Shannon CE and W Weaver. 1963. The Mathematical theory of communication. Illinois Univ. Press, Urbana.
30 Simpson EH. 1949. Measurement of diversity. Nature 163:1-688.   DOI
31 Kelly M. 2000. Identification of common benthic diatoms in rivers. Field Stud. 9:583-700.
32 Kelly M. 2002. Role of benthic diatoms in the implementation of the urban wastewater treatment directive in the River Wear, North-East England. J. of Applied Phycol. 14:9-18.   DOI   ScienceOn
33 Keyll MG, C Adams, AC Graves, J Jamieson, J Krokowski, EB Lycett, J Murray-Bligh, S Pritchard and C Wilkins. 2001. The trophic diatom index: A user's manual. (Revised edition). R & D Technical Report E2/TR2. Environment Agency.
34 Koster D and T Hubener. 2001. Application of diatom Indices in a planted ditch constructed for tertiary sewage treatment in Schwaan, Germany. Int. Rev. Gesamten Hydrobiol. 86:241-252.   DOI   ScienceOn
35 Kovacs C, M Kahlert and J Padisak. 2006. Benthic diatom communities along pH and TP gradients in Hungarian Swedish streams. J. of Applied Phycol. 18:105-117.   DOI   ScienceOn
36 Kutka FJ and C Richards. 1996. Relating diatom assemblage structure to stream habitate quality. J. of the North Amer. Benthol. Soc. 15:469-480.   DOI   ScienceOn
37 Lamb MA and RL Lowe. 1987. Effects of current velocity on the physical structuring of diatom (Bascillariophyceae) communities. Ohio J. Sci. 87:72-78.
38 Lange-Bertalot H. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwig. 64:285-304.
39 Lobo EA, K Katoh and Y Argua. 1995. Response of epilithic diatom assemblages to water pollution in rivers in the Tokyo Metropolitan area, Japan. Freshwater Biol. 34:191-204.   DOI   ScienceOn
40 Leland HV and SD Porter. 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biol. 44:279-301.   DOI   ScienceOn
41 Lugthart GJ and JB Wallace. 1992. Effects of disturbance on benthic functional structure and production in mountain streams. J. N. Am. Benthol. Soc. 19:138-164.
42 Nelson KL. 1993. Instream sand and gravel mining. In Impacts on Warmwater Streams: Guidelines for Evaluation (Bryan CF and DA Rutherford eds.). Southern Division, American Fisheries Society, Little Rock, Arkansas.
43 O'Farrell I, A Vinocur and I Izaguirre. 1996. Phytoplankton ecology of the lower Parana River (Argentina). Arch. Hydrobiol. Suppl. 115:75-89.
44 Biggs BJF. 1995. The contribution of flood disturbance, catchment geology and land use to the habitate template of periphyton in stream ecosystems. Freshwater Biol. 33:419-438.   DOI   ScienceOn
45 Biggs BJF. 1996. Patterns of benthic algae in streams. In Algal Ecology- Freshwater Benthic Ecosystem (Stevenson RJ, ML Bothwell and RL Lowe eds.). Academic Press. California.
46 Brown AV, MM Lyttle and KB Brown. 1998. Impacts of gravel mining on gravel bed streams. Transact. of the Amer. Fisher. Soc. 127:979-994.   DOI   ScienceOn
47 Dunne T and LB Leopold. 1978. Water in Environmental Planning. WH Freeman and Company, San Francisco.
48 Eloranta P and J Soininen. 2002. Ecological status of some Finnish rivers evaluated using benthic diatom communities. J. of Applied Phycol. 14:1-7.   DOI   ScienceOn
49 Fukshima H, T Ko-Bayashi and H Ohtsuka. 1990. Plants from the Shimanto-gawa river, Attached Algae. Bull. Kochi Citizen Libr. pp.103-130.
50 Handey HI. 1974. Permanganate method for cleaning freshly gathered diatoms. Microscopy 32:423-426.
51 Harding JS, RG Young, JW Hayes, KA Shearer and JD Stark. 1999. Changes in agricultural intensity and river health along a river continuum. Freshwater Biol. 42:345-357.   DOI
52 Hill BH, AT Herlithy, PR Kaufmann, RJ Stevenson, FH McCormick and CB Johnson. 2000. Use of periphyton assemblage data as an index of biotic integrity. J. of the North Amer. Benthol. Soc. 19:50-67.   DOI   ScienceOn
53 Hillebrand H and U Sommer. 2000. Diversity of benthic microalgae in response to colonization time and eutrophication. Aquat. Bot. 67:221-236.   DOI   ScienceOn
54 Izsak CA, RG Price, JT Hardy and PW Basson. 1995. Biodiversity of periphyton (diatoms) and echinoderms around a refinery effluent and possible associations with stability. Aquat. Ecosyst. Health Manage. 5:61-70.
55 Kanehl P and J Lyons. 1992. Impacts of in-stream sand and gravel mining on stream habitate and fish communities, including a survey on the Big Rib River, Marathon County, Wisconsin. Wisconsin Department of Natural Resources Research Report 155, Madison.
56 정 준, 최재신, 이정호. 1993. 부착규조 군집의 유기오탁 지수 (DAIpo)에 의한 금호강의 수질 평가. 한국육수학회지. 11:43-58.
57 창녕군. 2004. 하천골재채취 예정지(남지 월하지구) 사전 환경성검토서.
58 최재신. 1993. 밀양강의 부착규조에 대한 분류 및 생태학적 연구. 경북대 박사학위 논문. 223pp.
59 한국환경정책평가연구원. 2007. 수생태계 보호를 위한 토사 관리 방안. RE-11, 연구보고서.
60 환경부.국립환경과학원. 2004. 물환경종합평가방법 개발 조사연구(I)-수생태 건강성조사 및 평가체계 연구.
61 환경부 물환경정보 시스템. http://water.nier.go.kr.
62 Naver 백과사전. http://100.naver.com/.
63 Barbour MT, J Gerritsen, BD Snyder and JB Stribling. 1999. Rapid Bioassessment Protocols for Use in Steam and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second edition. EPA 841-B-99-002. US Environmental Protection Agency Office of Water, Washington, DC.
64 Barker HA. 1935. Photosynthesis in diatoms. Arch. Mikrobiol. 6:141-156.   DOI
65 박찬갑. 강미아. 2006. 조류성장에 미치는 점토탁수의 영향평가. J. of Engneer. Geol. 16:403-409.
66 배연재, 원두희, 이웅재, 승현우. 2003. 하천생태계에 대한 환경평가 기법과 생물다양성 시스템의 개발 및 적용. 환경생물. 21:223-233.
67 양홍준, 채병수. 1994. 대도시 주변 하천수계의 수질환경과 육수생물학적 연구-금호강수계의 어류상과 어류군집구조(II). 한국육수학회지. 27:177-188.
68 윤성애, 김난영, 김백호, 황순진. 2010. 도시하천(원주천) 유입이 섬강하류 부착규조 군집에 미치는 영향. 한국하천호수학회지. 43:232-241.
69 원두희, 이종은, 공동수. 2007. 탁수가 무척추동물 군집에 미치는 영향. 한국자연환경보전협회 자연보존. 139:16-29.
70 윤성애. 2010. 자연 및 인공하천에서 환경교란이 저서성 규조류 군집에 미치는 영향. 건국대학교 대학원 석사논문.
71 이정호. 1992. 광천(경상북도 울진군)의 부착규조에 대한 분류 및 생태학적 연구. 경북대 박사학위 논문. 279pp.
72 이정호. 1998. 낙동강의 부착규조와 유기오탁지수 (DAIpo). 한국육수학회지. 31:38-44.
73 장광현, 김현우, 최상호, 김중곤, 주기재. 1999. 도시하천(서울 양재천) 및 산지하천 (경기도 사기막천)에서 부착 규조 군집의 동태. 한국육수학회지. 32:229-237.
74 김용재. 1999. 부착규조 군집에 의한 포천천의 수질 평가. 한국육수학회지. 32:135-140.
75 김용재. 2001. 신천의 부착규조 군집을 이용한 유기오탁 판정. 한국육수학회지. 34:199-205.
76 김자현, 서진원, 나영언, 안광국. 2007(1). 용담댐 건설후 하류부 하천 생태계의 탁수영향 평가. 한국육수학회지. 40:130-142.
77 김용재. 2004. 한탄강의 돌 부착조류 군집의 시, 공간적 동태. Algae 19:15-22.   DOI
78 김용재. 2007. 도시화 정도에 따른 포천천과 영평천의 돌부착규조 군집 변화. 한국육수학회지. 40:468-480.
79 김용진, 신경애, 이옥민. 2009. 남한강 지류인 복하천과 달천의 부착규조를 이용한 생물학적 평가. 환경생물. 27:414-424.
80 김재구, 최재석, 장영수, 이광열, 김범철. 2007(2). 탁수가 어류군집에 미치는 영향: 대기천 및 봉산천의 사례연구. 한국육수학회지. 40:459-467.
81 낙동강 물환경연구소. 2005. 하상교란 (골재채취)이 하천 생태계에 미치는 영향. 낙동강수계 2005년도 환경기초사업 2년차 최종보고서.
82 박정원, 이경락, 최재신, 김한순. 2005. 임하댐의 탁수 형성 후 식물플랑크톤 군집 동태. 한국육수학회지. 38:429-434.