Browse > Article

Endocrine Disruption by Alkylphenols in Amphibians  

Ahn, Hae-Sun (Department of Life Science, College of Natural Sciences, Hanyang University)
Park, Chan-Jin (Department of Life Science, College of Natural Sciences, Hanyang University)
Ahn, Hyo-Min (Department of Life Science, College of Natural Sciences, Hanyang University)
Gye, Myung-Chan (Department of Life Science, College of Natural Sciences, Hanyang University)
Publication Information
Korean Journal of Environmental Biology / v.29, no.1, 2011 , pp. 1-10 More about this Journal
Abstract
Amphibian population declines globally. Aquatic contamination by organic pollutants including endocrine disrupters has been suspected to the one of the reason for distinction of amphibia which has obligate aquatic life style during larval period. Amphibians have been widely accepted as animal model for the study of endocrine disruption in aquatic ecosystem at molecular as well as individual levels. There are increasing need for toxicological data in amphibians at multiple endpoints for management of contamination and development of safety guideline for important EDs in aquatic media. Alkylphenols have been widely used in agricultural, industrial, and housekeeping activities, contaminating the aquatic media and evoking endocrine disruption in aquatic animals. In this review, we summarized data concerning the endocrine disruption by alkylphenol organic pollutants on amphibians according to route, concentration, terms, and developmental stage of exposure together with mechanism of endocrine disruption.
Keywords
endocrine disruption; alkylphenols; amphibia;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mann RM and JR Bidwell. 2000. Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquat. Toxicol. 51:19-29.   DOI   ScienceOn
2 Mann RM and JR Bidwell. 2001. The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ. Pollut. 114:195-205.   DOI   ScienceOn
3 Herrmann T, M Ball, K Rothenbacher and M Wesselmann. 2003. Emissions of tetrabromobisphenol A from computer monitors. Organohalogen Compounds 61:259-262.
4 Hinther A, D Domanski, S Vawda and CC Helbing. 2010. Cfin: a cultured frog tadpole tail fin biopsy approach for detection of thyroid hormone-disrupting chemicals. Environ. Toxicol. Chem. 29:380-388.   DOI   ScienceOn
5 Houlahan JE, CS Findlay, BR Schmidt, AH Meyer and SL Kuzmin. 2000. Quantitative evidence for global amphibian population declines. Nature 404:752-755.   DOI   ScienceOn
6 Ikeda Y, W Shen, HA Ingraham and KL Parker. 1994. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol. Endocrinol. 8:654-662.   DOI   ScienceOn
7 Ishihara A, N Nishiyama, S Sugiyama and K Yamauchi. 2003. The effect of endocrine disrupting chemicals on thyroid hormone binding to Japanese quail transthyretin and thyroid hormone receptor. Gen. Comp. Endocrinol. 134:36-43.   DOI   ScienceOn
8 Iwamuro S, M Sakakibara, M Terao, A Ozawa, C Kurobe, T Shigeura, M Kato and S Kikuyama. 2003. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen. Comp. Endocrinol. 133:189-198.   DOI   ScienceOn
9 Iwamuro S, M Yamada, M Kato and S Kikuyama. 2006. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and downregulation of retinoid X receptor gamma in Xenopus tail culture. Life Sci. 79:2165-2171.   DOI   ScienceOn
10 Kaneko M, R Okada, K Yamamoto, M Nakamura, G Mosconi, AM Polzonetti-Magni and S Kikuyama. 2008. Bisphenol A acts differently from and independently of thyroid hormone in suppressing thyrotropin release from the bullfrog pituitary. Gen. Comp. Endocrinol. 155:574-580.   DOI   ScienceOn
11 Kang HS, JS Noh and MC Gye. 2006. Effect of nonylphenol on the expression of hepatic vitellogenin mRNA in male Bombina orientalis (Boulenger). Bull. Environ. Contam. Toxicol. 77:15-20.   DOI   ScienceOn
12 Kitamura S, T Kato, M Iida, N Jinno, T Suzuki, S Ohta, N Fujimoto, H Hanada, K Kashiwagi and A Kashiwagi. 2005. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sci. 76:1589-1601.   DOI   ScienceOn
13 Croteau MC, M Davidson, P Duarte-Guterman, M Wade, JT Popesku, S Wiens, DR Lean and VL Trudeau. 2009. Assessment of thyroid system disruption in Rana pipiens tadpoles chronically exposed to UVB radiation and 4-tert-octylphenol. Aquat. Toxicol. 95:81-92.   DOI   ScienceOn
14 Goleman WL, JA Carr and TA Anderson. 2002. Environmentally relevant concentrations of ammonium perchlorate inhibit thyroid function and alter sex ratios in developing Xenopus laevis. Environ. Toxicol. Chem. 21:590-597.   DOI
15 Gye MC and DH Kim. 2005. Bisphenol A induces hepatic vitellogenin mRNA in male Bombina orientalis. Bull. Environ. Contam. Toxicol. 75:1-6.   DOI   ScienceOn
16 Hayes T, K Haston, M Tsui, A Hoang, C Haeffele and A Vonk. 2002a. Herbicides: feminization of male frogs in the wild. Nature 419:895-896.   DOI   ScienceOn
17 Hayes T, K Haston, M Tsui, A Hoang, C Haeffele and A Vonk. 2003. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ. Health Perspect. 111:568-575.
18 Helleday T, KL Tuominen, A Bergman and D Jenssen. 1999. Brominated flame retardants induce intragenic recombination in mammalian cells. Mutation Research 439:137-147.   DOI   ScienceOn
19 Hayes TB, A Collins, M Lee, M Mendoza, N Noriega, AA Stuart and A Vonk. 2002b. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Nat. Acad. Sci. 99:5476-5479.   DOI   ScienceOn
20 Heimeier RA, B Das, DR Buchholz and YB Shi. 2009. The xenoestrogen bisphenol A inhibits postembryonic vertebrate development by antagonizing gene regulation by thyroid hormone. Endocrinology 150:2964-2973.   DOI   ScienceOn
21 Herbener GH. 1989. Use of the protein A-gold immunocytochemical and enzyme-gold cytochemical techniques in studies of vitellogenesis. Am. J. Anat. 185:244-254.   DOI   ScienceOn
22 Herbener GH, RC Feldhoff and ML Fonda. 1983. A correlated morphometric and biochemical study of estrogen-induced vitellogenesis in male Rana pipiens. J. Ultrastruct. Res. 83:28-42.   DOI   ScienceOn
23 김호승, 계명찬, 2003. 프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구. 환경생물. 21:87-100.
24 최영주, 윤춘식, 박주홍, 진정효, 정선우. 2002. 한국산 도롱뇽 (Hynobius leechii)의 농경지에서의 배 발생 이상과 살균제 Benomyl의 독성 효과. 한국육수학회지. 35:198-212.
25 환경부. 2001. 내분비계장애물질에 의한 생태영향조사.
26 Bevan CL, DM Porter, A Prasad, MJ Howard and LP Henderson. 2003. Environmental estrogens alter early development in Xenopus laevis. Environ. Health Perspect. 111:88-96.   DOI
27 Blaustein AR and DB Wake. 1995. The puzzle of declining amphibian populations. Sci. Am. 272:52-57.
28 Bogi C, G Levy, I Lutz and W Kloas. 2002. Functional genomics and sexual differentiation in amphibians. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 133:559-570.   DOI   ScienceOn
29 Boyer R and CE Grue. 1995. The need for water quality criteria for frogs. Environ. Health Perspect. 103:352-357.   DOI   ScienceOn
30 Bögi C, J Schwaiger, H Ferling, U Mallow, C Steineck, F Sinowatz, W Kalbfus, RD Negele, I Lutz and W Kloas. 2003. Endocrine effects of environmental pollution on Xenopus laevis and Rana temporaria. Environ. Res. 93:195-201.   DOI   ScienceOn
31 Carey C and CJ Bryant. 1995. Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations. Environ. Health Perspect. 103 Suppl 4:13-17.
32 Chang CY and E Witschi. 1956. Genetic control and hormonal reversal of sex differentiation in Xenopus. Proc. Soc. Exp. Biol. 93:140-144.   DOI
33 Christensen JR, JS Richardson, CA Bishop, B Pauli and J Elliott. 2005. Effects of nonylphenol on rates of tail resorption and metamorphosis in Rana catesbeiana tadpoles. J. Toxicol. Environ. Health A. 68:557-572.   DOI   ScienceOn
34 Colborn T and C Clement. 1992. Chemically Induced Alterations in Sexual and Functional Development: The Wildlife/ Human Connection. Princeton Scientific Publishing, Princeton.
35 Yang FX, Y Xu and S Wen. 2005. Endocrine-disrupting effects of nonylphenol, bisphenol A, and p,p′-DDE on Rana nigromaculata tadpoles. Bull. Environ. Contam. Toxicol. 75: 1168-1175.   DOI   ScienceOn
36 계명찬, 이명식, 강희정, 정경아, 안혜선. 2004. 무당개구리 비텔로제닌 유전자의 발현의 RT-PCR 검출법. 환경생물.22:329-335.
37 계명찬, 한명수. 2000. 척추동물의 난황형성과 환경에스트로젠. 환경생물. 18:291-298.
38 Wu B, T Ford, JD Gu, XX Zhang, AM Li and SP Cheng. 2010. Computational studies of interactions between endocrine disrupting chemicals and androgen receptor of different vertebrate species. Chemosphere 80:535-541.   DOI   ScienceOn
39 Wu F, S Khan, Q Wu, R Barhoumi, R Burghardt and S Safe. 2008. Ligand structure-dependent activation of estrogen receptor alpha/Sp by estrogens and xenoestrogens. J. Steroid Biochem. Mol. Biol. 110:104-115.   DOI   ScienceOn
40 Yamauchi K, A Ishihara, H Fukazawa and Y Terao. 2003. Competitive interactions of chlorinated phenol compounds with 3,3′,5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol. Appl. Pharmacol. 187:110-117.   DOI   ScienceOn
41 Zhang F, SJ Degitz, GW Holcombe, PA Kosian, J Tietge, N Veldhoen and CC Helbing. 2006. Evaluation of gene expression endpoints in the context of a Xenopus laevis metamorphosis- based bioassay to detect thyroid hormone disruptors. Aquat. Toxicol. 76:24-36.   DOI   ScienceOn
42 Pickford DB, MJ Hetheridge, JE Caunter, AT Hall and TH Hutchinson. 2003. Assessing chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a flow-through exposure system. Chemosphere 53:223-235.   DOI   ScienceOn
43 Opitz R, S Hartmann, T Blank, T Braunbeck, I Lutz and W Kloas. 2006. Evaluation of histological and molecular endpoints for enhanced detection of thyroid system disruption in Xenopus laevis tadpoles. Toxicol. Sci. 90:337-348.   DOI
44 Palmer BD and SK Palmer. 1995. Vitellogenin induction by xenobiotic estrogens in the red-eared turtle and African clawed frog. Environ. Health Perspect. 103 Suppl 4:19-25.   DOI
45 Park CJ, HS Kang and MC Gye. 2010. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3′- triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura). Chemosphere 81:1292-1300.   DOI   ScienceOn
46 Plotner J and R Gunther. 1987. Toxicity of an anionic detergent to the spawn and larvae of anurans (Amphibia). Int. Rev. Ges. Hydrobiol. 72:759-771.   DOI
47 Presutti C, C Vismara, M Camatini and G Bernardini. 1994. Ecotoxicological effects of a nonionic detergent (Triton DF- 16) assayed by ModFETAX. Bull. Environ. Contam. Toxicol. 53:405-411.
48 Reeder AL, GL Foley, DK Nichols, LG Hansen, B Wikoff, S Faeh, J Eisold, MB Wheeler, R Warner, JE Murphy and VR Beasley. 1998. Forms and prevalence of intersexuality and effects of environmental contaminants on exuality in cricket frogs (Acris crepitans). Environ. Health Perspect. 106:261- 266.   DOI   ScienceOn
49 Sellstrㅐm U and B Jansson. 1995. analysis of tetrabromophenol A in a priduct and environmental samples. Chemosphere 31:3085-3092.   DOI   ScienceOn
50 van Wyk JH, EJ Pool and AJ Leslie. 2003. The effects of antiandrogenic and estrogenic disrupting contaminants on breeding gland (nuptial pad) morphology, plasma testosterone levels, and plasma vitellogenin levels in male Xenopus laevis (African clawed frog). Arch. Environ. Contam. Toxicol. 44:247-256.   DOI   ScienceOn
51 McLachlan JA. 2001. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr. Rev. 22:319-341.   DOI   ScienceOn
52 Watanabe I, T Kashimoto and R Tatslukawa. 1983. Indetification of the flame retardant tetrabromobisphenol-A in the river sediment and the mussel collected in Osaka. Bull. Environ. Contam. Toxicol. 31:48-52.   DOI   ScienceOn
53 Matsumura N, H Ishibashi, M Hirano, Y Nagao, N Watanabe, H Shiratsuchi, T Kai, T Nishimura, A Kashiwagi and K Arizono. 2005. Effects of nonylphenol and triclosan on production of plasma vitellogenin and testosterone in male South African clawed frogs (Xenopus laevis). Biol. Pharm. Bull. 28:1748-1751.   DOI   ScienceOn
54 Mayer LP, CA Dyer and CR Propper. 2003. Exposure to 4-tertoctylphenol accelerates sexual differentiation and disrupts expression of steroidogenic factor 1 in developing bullfrogs. Environ. Health Perspect. 111:557-561.
55 Mitsui N, O Tooi and A Kawahara. 2007. Vitellogenin-inducing activities of natural, synthetic, and environmental estrogens in primary cultured Xenopus laevis hepatocytes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146:581-587.   DOI
56 Mommsen TP and PJ Walsh. 1988. Vitellogenesis and oocyte assembly. pp.347-406. In Fish Physiology (Hoar WS and DJ Randall eds.). vol. 11. Academic Press, New York.
57 Mosconi G, O Carnevali, MF Franzoni, E Cottone, I Lutz, W Kloas, K Yamamoto, S Kikuyama and AM Polzonetti- Magni. 2002. Environmental estrogens and reproductive biology in amphibians. Gen. Comp. Endocrinol. 126:125-129.   DOI   ScienceOn
58 OECD, 2009 OECD, Test No. 231: Amphibian Metamorphosis Assay, OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems. (OECD ed.) OECD Publishing.
59 Opitz R and W Kloas. 2010. Developmental regulation of gene expression in the thyroid gland of Xenopus laevis tadpoles. Gen. Comp. Endocrinol. 168:199-208.   DOI   ScienceOn
60 Ohtani H, I Miura and Y Ichikawa. 2000. Effects of dibutyl phthalate as an environmental endocrine disrupter on gonadal sex differentiation of genetic males of the frog Rana rugosa. Environ. Health Perspect. 108:1189-1193.   DOI   ScienceOn
61 Kloas W. 2002. Amphibians as a model for the study of endocrine disruptors. Int. Rev. Cytol. 216:1-57.
62 Kloas W and I Lutz. 2006. Amphibians as model to study endocrine disrupters. J. Chromatogr. A. 1130:16-27.   DOI   ScienceOn
63 Kloas W, I Lutz and R Einspanier. 1999. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci. Total Environ. 225:59-68.   DOI
64 Knudsen FR and TG Pottinger. 1999. Interaction of endocrine disrupting chemicals, singly and in combination, with estrogen-, androgen-, and corticosteroid-binding sites in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 44:159- 170.
65 Kohno S, M Fujime, Y Kamishima and T Iguchi. 2004. Sexually dimorphic basal water absorption at the isolated pelvic patch of Japanese tree frog, Hyla japonica. J. Exp. Zool. A Comp. Exp. Biol. 301:428-438.
66 Lahr J. 1997. Ecotoxicology of organisms adapted to life in temporary freshwater ponds in arid and semi-arid regions. Arch. Environ. Contam. Toxicol. 32:50-57.   DOI   ScienceOn
67 Lee KM, W Yang, JS Rhee, DS Hwang, CJ Park, MC Gye, JS Lee and I Shin. 2010. Effects of endocrine disruptors on Bombina orientalis P450 aromatase activity. Zoolog. Sci. 27:338-343.   DOI   ScienceOn
68 Loeffler IK, DL Stocum, JF Fallon and CU Meteyer. 2001. Leaping lopsided: a review of the current hypotheses regarding etiologies of limb malformations in frogs. Anat. Rec. 265:228-245.   DOI   ScienceOn
69 Lutz I and W Kloas. 1999. Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding. Sci. Total Environ. 225:49-57.