Browse > Article
http://dx.doi.org/10.7854/JPSK.2012.21.2.249

Rock Deformation and Formation of LPO of Minerals in the Upper Mantle: Implications for Seismic Anisotropy  

Jung, Hae-Meong (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
The Journal of the Petrological Society of Korea / v.21, no.2, 2012 , pp. 249-261 More about this Journal
Abstract
Olivine is a dominant mineral in the upper mantle and is elastically very anisotropic. When olivine is deformed under stress at high pressure and high temperature, lattice preferred orientation (LPO) is formed. It is known that the LPO of olivine is affected by water, stress, and pressure. In this paper, I reviewed the papers dealing with the effects of water, stress, and pressure on the LPO of olivine, summarized the papers on the LPOs of olivine in natural mantle rocks, and discussed its implications for seismic anisotropy in the upper mantle. In addition, I also described four types of LPOs of orthopyroxene recently found in natural spinel lherzolite.
Keywords
mantle; olivine; orthopyroxene; lattice preferred orientation; seismic anisotropy; rock deformation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abramson, E.H., Brown, J.M., Slutsky, L.J., and Zaug, J., 1997. The elastic constants of San Carlos olivine to 17 GPa. J. Geophys. Res.-Solid Earth, 102, 12253-12263.   DOI
2 Ando, M., Ishikawa, Y., and Yamazaki, F., 1983. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 88, 5850-5864.   DOI
3 Ben Ismail, W., and Mainprice, D., 1998. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296, 145-157.   DOI   ScienceOn
4 Blacic, J.D., 1972. Effects of water in the experimental deformation of olivine, in: Heard, H.C., Borg, I.Y., Carter, N.L., Raleigh, C.B. (Eds.), Flow and Fracture of Rocks. American Geophysical Union, Washington DC, 109-115.
5 Buiskool Toxopeus, J.M.A., 1976. Petrofabrics, microtextures and dislocation substructures of olivine in a peridotite mylonite (Alpe Arami, Switzerland). Leidse Geol. Meded., 51, 1-36.
6 Buiskool Toxopeus, J.M.A., 1977. Fabric development of olivine in a peridotite mylonite. Tectonophysics, 39, 55-71.   DOI   ScienceOn
7 Carter, N.L. and Ave Lallemant, H.G., 1970. High temperature flow of dunite and peridotite. Bulletin of the Geological Society of America, 81, 2181-2202.   DOI
8 Chopra, P.N. and Paterson, M.S., 1981. The experimental deformation of dunite. Tectonophysics, 78, 453-473.   DOI   ScienceOn
9 Chopra, P.N. and Paterson, M.S., 1984. The role of water in the deformation of dunite. Journal of Geophysical Research, 89, 7861-7876.   DOI
10 Christensen, N.I. and Lundquist, S.M., 1982. Pyroxene orientation within the upper mantle. Geological Society of America Bulletin, 93, 279-288.   DOI
11 Couvy, H., Frost, D.J., Heidelbach, F., Nyilas, K., Ungar, T., Mackwell, S., and Cordier, P., 2004. Shear deformation experiments of forsterite at 11GPa-1400 degrees C in the multianvil apparatus. European Journal of Mineralogy, 16, 877-889.   DOI   ScienceOn
12 Fouch, M.J., and Fischer, K.M., 1996. Mantle anisotropy beneath northwest Pacific subduction zones. J. Geophys. Res.-Solid Earth, 101, 15987-16002.   DOI
13 Frese, K., Trommsdorff, V., and Kunze, K., 2003. Olivine [100] normal to foliation: lattice preferred orientation in prograde garnet peridotite formed at high $H_2O$ activity, Cima di Gagnone (Central Alps). Contrib. Mineral. Petrol., 145, 75-86.   DOI
14 Frohlich, C., 1989. The nature of deep-focus earthquakes. Annual Review of Earth and Planetary Sciences, 17, 227-254.   DOI   ScienceOn
15 Gaherty, J.B., 2001. Seismic evidence for hotspot-induced bouyant flow beneath the Peykjanes ridge. Science, 293, 1645-1647.   DOI   ScienceOn
16 Green, H.W. and Burnley, P.C., 1989. A new self-organizing mechanism for deep-focus earthquakes Nature, 341, 733-737.   DOI
17 Green, H.W. and Jung, H., 2005. Fluids, faulting, and flow. Elements, 1, 31-37.   DOI
18 Green, H.W., Young, T.E., Walker, D., and Scholz, C.H., 1990. Anticrack-associated faulting at very high-pressure in natural olivine. Nature, 348, 720-722.   DOI
19 Hirth, G., and Kohlstedt, D.L., 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93-108.   DOI   ScienceOn
20 Hidas, K., Falus, G., Szabo, C., Szabo, P.J., Kovacs, I., and Foldes, T., 2007. Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 43, 484-503.   DOI   ScienceOn
21 Ishii, K., and Sawaguchi, T., 2002. Lattice- and shape-preferred orientation of orthopyroxene porphyroclasts in peridotites: an application of two-dimensional numerical modeling. Journal of Structural Geology, 24, 517-530.   DOI   ScienceOn
22 Jamtveit, B., Brooker, R., Brooks, K., Larsen, L.M., and Pedersen, T., 2001. The water content of olivines from the North Atlantic Volcanic Province. Earth and Planetary Science Letters, 186, 401-415.   DOI   ScienceOn
23 Jung, H., 2009. Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle. Lithos, 109, 341-349.   DOI   ScienceOn
24 Jung, H., 2011. Seismic anisotropy produced by serpentine in mantle wedge. Earth and Planetary Science Letters, 307, 535-543.   DOI   ScienceOn
25 Jung, H., Fei, Y.W., Silver, P.G., and Green, H.W., 2009b. Frictional sliding in serpentine at very high pressure. Earth and Planetary Science Letters, 277, 273-279.   DOI   ScienceOn
26 Jung, H. and Green, H.W., 2004. Experimental faulting of serpentinite during dehydration: Implications for earthquakes, seismic low-velocity zones, and anomalous hypocenter distributions in subduction zones. International Geology Review, 46, 1089-1102.   DOI   ScienceOn
27 Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S., 2006. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421, 1-22.   DOI   ScienceOn
28 Jung, H., Green, H.W., and Dobrzhinetskaya, L.F., 2004. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428, 545-549.   DOI   ScienceOn
29 Jung, H. and Karato, S., 2001a. Water-induced fabric transitions in olivine. Science, 293, 1460-1463.   DOI   ScienceOn
30 Jung, H. and Karato, S.I., 2001b. Effects of water on dynamically recrystallized grain-size of olivine. Journal of Structural Geology, 23, 1337-1344.   DOI   ScienceOn
31 Jung, H., Lee, J., Ko, B., Jung, S., Park, M., Cao, Y., and Song, S.G., 2012. Analysis of C-type olivine fabrics obtained from North Qaidam UHP belt in NW China and its implications for recycling water into deep mantle. Earth and Planetary Science Letters, submitted.
32 Jung, H., Mo, W., and Choi, S.H., 2009c. Deformation microstructures of olivine in peridotite from Spitsbergen, Svalbard and implications for seismic anisotropy. Journal of Metamorphic Geology, 27, 707-720.   DOI   ScienceOn
33 Jung, H., Mo, W., and Green, H.W., 2009a. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nature Geoscience, 2, 73-77.   DOI
34 Jung, H., Park, M., Jung, S., and Lee, J., 2010. Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene. Journal of Earth Science, 21, 555-568.   DOI
35 Karato, S., 2008. Deformation of earth materials. An introduction to the rheology of solid earth. Cambridge.
36 Karato, S. and Jung, H., 2003. Effects of pressure on high-temperature dislocation creep in olivine. Philosophical Magazine, A, 83, 401-414.   DOI   ScienceOn
37 Katayama, I., Karato, S.I., and Brandon, M., 2005. Evidence of high water content in the deep upper mantle inferred from deformation microstructures. Geology, 33, 613-616.   DOI   ScienceOn
38 Karato, S., Paterson, M.S., and FitzGerald, J.D., 1986. Rheology of synthetic olivine aggregates: Influence of water and grain size. Journal of Geophysical Research, 91, 8151-8176.   DOI
39 Karato, S.I., Jung, H., Katayama, I., and Skemer, P., 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 59-95.   DOI   ScienceOn
40 Katayama, I., Jung, H., and Karato, S.I., 2004. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32, 1045-1048.   DOI   ScienceOn
41 Kneller, E.A., van Keken, P.E., Karato, S., and Park, J., 2005. B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models. Earth and Planetary Science Letters, 237, 781-797.   DOI   ScienceOn
42 Kneller, E.A., van Keken, P.E., Katayama, I., and Karato, S., 2007. Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models. J. Geophys. Res.-Solid Earth, 112.
43 Lee, J. and Jung, H., 2011. B-type LPO of olivine in diamond-bearing garnet peridotites from Finsch, South Africa. AGU Fall meeting abstract, San Francisco.
44 Linckens, J., Herwegh, M., Muntener, O., and Mercolli, I., 2011. Evolution of a polymineralic mantle shear zone and the role of second phases in the localization of deformation. J. Geophys. Res.-Solid Earth, 116.
45 Long, M.D. and Becker, T.W., 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297, 341-354.   DOI   ScienceOn
46 Mackwell, S.J., Kohlstedt, D.L., and Paterson, M.S., 1985. The role of water in the deformation of olivine single crystals. Journal of Geophysical Research-Solid Earth and Planets, 90, 1319-1333.
47 Long, M.D. and Silver, P.G., 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319, 315-318.   DOI   ScienceOn
48 Long, M.D. and van der Hilst, R.D., 2005. Upper mantle anisotropy beneath Japan from shear wave splitting. Phys. Earth Planet. Inter., 151, 206-222.   DOI   ScienceOn
49 Mckel, J.R., 1969. Structural petrology of the garnet-peridotite of Alpe Arami (Ticino, Switzerland). Leidse Geol. Meded., 42, 61-130.
50 Mainprice, D., Barruol, G., and Ismail, W.B., 2000. The seismic anisotropy of the earth's mantle from single crystal to polycrystal., in: Karato, S., Forte, A.M., Liebermann, R.C., Masters, G., Stixrude, L. (Eds.), Earth's deep interior American Geophysical Union, Geophysical Monograph, 117, pp. 237-264.
51 Margheriti, L., Nostro, C., Cocco, M., and Amato, A., 1996. Seismic anisotropy beneath the Northern Apennines (Italy) and its tectonic implications. Geophysical Research Letters, 23, 2721-2724.   DOI   ScienceOn
52 Mehl, L., Hacker, B.R., Hirth, G., and Kelemen, P.B., 2003. Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. J. Geophys. Res.-Solid Earth, 108.
53 Mei, S. and Kohlstedt, D.L., 2000. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J. Geophys. Res.-Solid Earth, 105, 21471-21481.   DOI
54 Michibayashi, K., Tasaka, M., Ohara, Y., Ishii, T., Okamoto, A., and Fryer, P., 2007. Variable microstructure of peridotite samples from the southern Mariana Trench: Evidence of a complex tectonic evolution. Tectonophysics, 444, 111-118.   DOI   ScienceOn
55 Nicolas, A. and Christensen, N.I., 1987. Formation of anisotropy in upper mantle peridotites: A review. American Geophysical Union, 16, 111-123.
56 Mizukami, T., Wallis, S.R., and Yamamoto, J., 2004. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature, 427, 432-436.   DOI   ScienceOn
57 Montagner, J.P. and Guillot, L., 2000. Seismic anisotropy in the Earth's mantle. In: Boschi, E., Ekstrm, G., Morelli, A. (Eds.), Problems in Geophysics for the New Millennium, pp. 217-253.
58 Nakajima, J. and Hasegawa, A., 2004. Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth and Planetary Science Letters, 225, 365-377.   DOI   ScienceOn
59 Ohuchi, T., Kawazoe, T., Nishihara, Y., Nishiyama, N., and Irifune, T., 2011. High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth and Planetary Science Letters, 304, 55-63.   DOI   ScienceOn
60 Park, J. and Levin, V., 2002. Seismic Anisotropy: Tracing Plate Dynamics in the Mantle. Science, 296, 485-489.   DOI   ScienceOn
61 Park, M., Jung, H., and Kil, Y., 2012. Lattice preferred orientation of olivine and orthopyroxene in spinel peridotites from the Rio Grande rift, New Mexico. Journal of Geophysical Research, submitted.
62 Raleigh, C.B. and Paterson, M.S., 1965. Experimental deformation of serpentinite and its tectonic implications. Journal of Geophysical Research, 70, 3965-3985.   DOI
63 Raterron, P., Chen, J., Li, L., Weidner, D., and Cordier, P., 2007. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature. American Mineralogist, 92, 1436-1445.   DOI
64 Savage, M.K., 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37, 65-106.   DOI   ScienceOn
65 Raterron, P., Chen, J.H., Geenen, T., and Girard, J., 2011. Pressure effect on forsterite dislocation slip systems: Implications for upper-mantle LPO and low viscosity zone. Phys. Earth Planet. Inter., 188, 26-36.   DOI   ScienceOn
66 Ringwood, A.E., 1970. Phase transformations and the constutution of the mantle. Phys. Earth Planet. Inter., 3, 109-155.   DOI   ScienceOn
67 Russo, R.M. and Silver, P.G., 1994. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science, 263, 1105-1111.   DOI   ScienceOn
68 Sawaguchi, T., 2004. Deformation history and exhumation process of the horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 379, 109-126.   DOI   ScienceOn
69 Scholz, C.H., 2002. The Mechanics of earthquakes and faulting. Cambridge.
70 Silver, P.G., 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24, 385.   DOI   ScienceOn
71 Skemer, P., Katayama, I., and Karato, S.I., 2006. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water. Contrib. Mineral. Petrol., 152, 43-51.   DOI
72 Skemer, P., Warren, J.M., Kelemen, P.B., and Hirth, G., 2010. Microstructural and rheological evolution of a mantle shear zone. Journal of Petrology, 51, 43-53.   DOI   ScienceOn
73 Smith, G.P., Wiens, D.A., Fischer, K.M., Dorman, L.M., Webb, S.C., and Hildebrand, J.A., 2001. A complex pattern of mantle flow in the Lau backarc. Science, 292, 713-716.   DOI   ScienceOn
74 Van der Pluijm, B.A., and Marshak, S., 2004. Earth structure. Norton.
75 Soustelle, V., Tommasi, A., Demouchy, S., and Ionov, D.A., 2009. Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. Journal of Petrology, 51, 363-394.
76 Tasaka, M., Michibayashi, K., and Mainprice, D., 2008. B-type olivine fabrics developed in the fore-arc side of the mantle wedge along a subducting slab. Earth and Planetary Science Letters, 272, 747-757.   DOI   ScienceOn
77 Tommasi, A., Vauchez, A., and Ionov, D.A., 2008. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth and Planetary Science Letters, 272, 65-77.   DOI   ScienceOn
78 Wallace, P.J., 1998. Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophysical Research Letters, 25, 3639-3642.   DOI
79 Xu, Z.Q., Wang, Q., Ji, S.C., Chen, J., Zeng, L.S., Yang, J.S., Chen, F.Y., Liang, F.H., and Wenk, H.R., 2006. Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab. Tectonophysics, 421, 111-127.   DOI   ScienceOn
80 Zhang, S.Q. and Karato, S., 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375, 774-777.   DOI