1 |
Abramson, E.H., Brown, J.M., Slutsky, L.J., and Zaug, J., 1997. The elastic constants of San Carlos olivine to 17 GPa. J. Geophys. Res.-Solid Earth, 102, 12253-12263.
DOI
|
2 |
Ando, M., Ishikawa, Y., and Yamazaki, F., 1983. Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan. J. Geophys. Res., 88, 5850-5864.
DOI
|
3 |
Ben Ismail, W., and Mainprice, D., 1998. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296, 145-157.
DOI
ScienceOn
|
4 |
Blacic, J.D., 1972. Effects of water in the experimental deformation of olivine, in: Heard, H.C., Borg, I.Y., Carter, N.L., Raleigh, C.B. (Eds.), Flow and Fracture of Rocks. American Geophysical Union, Washington DC, 109-115.
|
5 |
Buiskool Toxopeus, J.M.A., 1976. Petrofabrics, microtextures and dislocation substructures of olivine in a peridotite mylonite (Alpe Arami, Switzerland). Leidse Geol. Meded., 51, 1-36.
|
6 |
Buiskool Toxopeus, J.M.A., 1977. Fabric development of olivine in a peridotite mylonite. Tectonophysics, 39, 55-71.
DOI
ScienceOn
|
7 |
Carter, N.L. and Ave Lallemant, H.G., 1970. High temperature flow of dunite and peridotite. Bulletin of the Geological Society of America, 81, 2181-2202.
DOI
|
8 |
Chopra, P.N. and Paterson, M.S., 1981. The experimental deformation of dunite. Tectonophysics, 78, 453-473.
DOI
ScienceOn
|
9 |
Chopra, P.N. and Paterson, M.S., 1984. The role of water in the deformation of dunite. Journal of Geophysical Research, 89, 7861-7876.
DOI
|
10 |
Christensen, N.I. and Lundquist, S.M., 1982. Pyroxene orientation within the upper mantle. Geological Society of America Bulletin, 93, 279-288.
DOI
|
11 |
Couvy, H., Frost, D.J., Heidelbach, F., Nyilas, K., Ungar, T., Mackwell, S., and Cordier, P., 2004. Shear deformation experiments of forsterite at 11GPa-1400 degrees C in the multianvil apparatus. European Journal of Mineralogy, 16, 877-889.
DOI
ScienceOn
|
12 |
Fouch, M.J., and Fischer, K.M., 1996. Mantle anisotropy beneath northwest Pacific subduction zones. J. Geophys. Res.-Solid Earth, 101, 15987-16002.
DOI
|
13 |
Frese, K., Trommsdorff, V., and Kunze, K., 2003. Olivine [100] normal to foliation: lattice preferred orientation in prograde garnet peridotite formed at high activity, Cima di Gagnone (Central Alps). Contrib. Mineral. Petrol., 145, 75-86.
DOI
|
14 |
Frohlich, C., 1989. The nature of deep-focus earthquakes. Annual Review of Earth and Planetary Sciences, 17, 227-254.
DOI
ScienceOn
|
15 |
Gaherty, J.B., 2001. Seismic evidence for hotspot-induced bouyant flow beneath the Peykjanes ridge. Science, 293, 1645-1647.
DOI
ScienceOn
|
16 |
Green, H.W. and Burnley, P.C., 1989. A new self-organizing mechanism for deep-focus earthquakes Nature, 341, 733-737.
DOI
|
17 |
Green, H.W. and Jung, H., 2005. Fluids, faulting, and flow. Elements, 1, 31-37.
DOI
|
18 |
Green, H.W., Young, T.E., Walker, D., and Scholz, C.H., 1990. Anticrack-associated faulting at very high-pressure in natural olivine. Nature, 348, 720-722.
DOI
|
19 |
Hirth, G., and Kohlstedt, D.L., 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93-108.
DOI
ScienceOn
|
20 |
Hidas, K., Falus, G., Szabo, C., Szabo, P.J., Kovacs, I., and Foldes, T., 2007. Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 43, 484-503.
DOI
ScienceOn
|
21 |
Ishii, K., and Sawaguchi, T., 2002. Lattice- and shape-preferred orientation of orthopyroxene porphyroclasts in peridotites: an application of two-dimensional numerical modeling. Journal of Structural Geology, 24, 517-530.
DOI
ScienceOn
|
22 |
Jamtveit, B., Brooker, R., Brooks, K., Larsen, L.M., and Pedersen, T., 2001. The water content of olivines from the North Atlantic Volcanic Province. Earth and Planetary Science Letters, 186, 401-415.
DOI
ScienceOn
|
23 |
Jung, H., 2009. Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle. Lithos, 109, 341-349.
DOI
ScienceOn
|
24 |
Jung, H., 2011. Seismic anisotropy produced by serpentine in mantle wedge. Earth and Planetary Science Letters, 307, 535-543.
DOI
ScienceOn
|
25 |
Jung, H., Fei, Y.W., Silver, P.G., and Green, H.W., 2009b. Frictional sliding in serpentine at very high pressure. Earth and Planetary Science Letters, 277, 273-279.
DOI
ScienceOn
|
26 |
Jung, H. and Green, H.W., 2004. Experimental faulting of serpentinite during dehydration: Implications for earthquakes, seismic low-velocity zones, and anomalous hypocenter distributions in subduction zones. International Geology Review, 46, 1089-1102.
DOI
ScienceOn
|
27 |
Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S., 2006. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421, 1-22.
DOI
ScienceOn
|
28 |
Jung, H., Green, H.W., and Dobrzhinetskaya, L.F., 2004. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428, 545-549.
DOI
ScienceOn
|
29 |
Jung, H. and Karato, S., 2001a. Water-induced fabric transitions in olivine. Science, 293, 1460-1463.
DOI
ScienceOn
|
30 |
Jung, H. and Karato, S.I., 2001b. Effects of water on dynamically recrystallized grain-size of olivine. Journal of Structural Geology, 23, 1337-1344.
DOI
ScienceOn
|
31 |
Jung, H., Lee, J., Ko, B., Jung, S., Park, M., Cao, Y., and Song, S.G., 2012. Analysis of C-type olivine fabrics obtained from North Qaidam UHP belt in NW China and its implications for recycling water into deep mantle. Earth and Planetary Science Letters, submitted.
|
32 |
Jung, H., Mo, W., and Choi, S.H., 2009c. Deformation microstructures of olivine in peridotite from Spitsbergen, Svalbard and implications for seismic anisotropy. Journal of Metamorphic Geology, 27, 707-720.
DOI
ScienceOn
|
33 |
Jung, H., Mo, W., and Green, H.W., 2009a. Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nature Geoscience, 2, 73-77.
DOI
|
34 |
Jung, H., Park, M., Jung, S., and Lee, J., 2010. Lattice preferred orientation, water content, and seismic anisotropy of orthopyroxene. Journal of Earth Science, 21, 555-568.
DOI
|
35 |
Karato, S., 2008. Deformation of earth materials. An introduction to the rheology of solid earth. Cambridge.
|
36 |
Karato, S. and Jung, H., 2003. Effects of pressure on high-temperature dislocation creep in olivine. Philosophical Magazine, A, 83, 401-414.
DOI
ScienceOn
|
37 |
Katayama, I., Karato, S.I., and Brandon, M., 2005. Evidence of high water content in the deep upper mantle inferred from deformation microstructures. Geology, 33, 613-616.
DOI
ScienceOn
|
38 |
Karato, S., Paterson, M.S., and FitzGerald, J.D., 1986. Rheology of synthetic olivine aggregates: Influence of water and grain size. Journal of Geophysical Research, 91, 8151-8176.
DOI
|
39 |
Karato, S.I., Jung, H., Katayama, I., and Skemer, P., 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 59-95.
DOI
ScienceOn
|
40 |
Katayama, I., Jung, H., and Karato, S.I., 2004. New type of olivine fabric from deformation experiments at modest water content and low stress. Geology, 32, 1045-1048.
DOI
ScienceOn
|
41 |
Kneller, E.A., van Keken, P.E., Karato, S., and Park, J., 2005. B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models. Earth and Planetary Science Letters, 237, 781-797.
DOI
ScienceOn
|
42 |
Kneller, E.A., van Keken, P.E., Katayama, I., and Karato, S., 2007. Stress, strain, and B-type olivine fabric in the fore-arc mantle: Sensitivity tests using high-resolution steady-state subduction zone models. J. Geophys. Res.-Solid Earth, 112.
|
43 |
Lee, J. and Jung, H., 2011. B-type LPO of olivine in diamond-bearing garnet peridotites from Finsch, South Africa. AGU Fall meeting abstract, San Francisco.
|
44 |
Linckens, J., Herwegh, M., Muntener, O., and Mercolli, I., 2011. Evolution of a polymineralic mantle shear zone and the role of second phases in the localization of deformation. J. Geophys. Res.-Solid Earth, 116.
|
45 |
Long, M.D. and Becker, T.W., 2010. Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297, 341-354.
DOI
ScienceOn
|
46 |
Mackwell, S.J., Kohlstedt, D.L., and Paterson, M.S., 1985. The role of water in the deformation of olivine single crystals. Journal of Geophysical Research-Solid Earth and Planets, 90, 1319-1333.
|
47 |
Long, M.D. and Silver, P.G., 2008. The subduction zone flow field from seismic anisotropy: A global view. Science, 319, 315-318.
DOI
ScienceOn
|
48 |
Long, M.D. and van der Hilst, R.D., 2005. Upper mantle anisotropy beneath Japan from shear wave splitting. Phys. Earth Planet. Inter., 151, 206-222.
DOI
ScienceOn
|
49 |
Mckel, J.R., 1969. Structural petrology of the garnet-peridotite of Alpe Arami (Ticino, Switzerland). Leidse Geol. Meded., 42, 61-130.
|
50 |
Mainprice, D., Barruol, G., and Ismail, W.B., 2000. The seismic anisotropy of the earth's mantle from single crystal to polycrystal., in: Karato, S., Forte, A.M., Liebermann, R.C., Masters, G., Stixrude, L. (Eds.), Earth's deep interior American Geophysical Union, Geophysical Monograph, 117, pp. 237-264.
|
51 |
Margheriti, L., Nostro, C., Cocco, M., and Amato, A., 1996. Seismic anisotropy beneath the Northern Apennines (Italy) and its tectonic implications. Geophysical Research Letters, 23, 2721-2724.
DOI
ScienceOn
|
52 |
Mehl, L., Hacker, B.R., Hirth, G., and Kelemen, P.B., 2003. Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. J. Geophys. Res.-Solid Earth, 108.
|
53 |
Mei, S. and Kohlstedt, D.L., 2000. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J. Geophys. Res.-Solid Earth, 105, 21471-21481.
DOI
|
54 |
Michibayashi, K., Tasaka, M., Ohara, Y., Ishii, T., Okamoto, A., and Fryer, P., 2007. Variable microstructure of peridotite samples from the southern Mariana Trench: Evidence of a complex tectonic evolution. Tectonophysics, 444, 111-118.
DOI
ScienceOn
|
55 |
Nicolas, A. and Christensen, N.I., 1987. Formation of anisotropy in upper mantle peridotites: A review. American Geophysical Union, 16, 111-123.
|
56 |
Mizukami, T., Wallis, S.R., and Yamamoto, J., 2004. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature, 427, 432-436.
DOI
ScienceOn
|
57 |
Montagner, J.P. and Guillot, L., 2000. Seismic anisotropy in the Earth's mantle. In: Boschi, E., Ekstrm, G., Morelli, A. (Eds.), Problems in Geophysics for the New Millennium, pp. 217-253.
|
58 |
Nakajima, J. and Hasegawa, A., 2004. Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth and Planetary Science Letters, 225, 365-377.
DOI
ScienceOn
|
59 |
Ohuchi, T., Kawazoe, T., Nishihara, Y., Nishiyama, N., and Irifune, T., 2011. High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth and Planetary Science Letters, 304, 55-63.
DOI
ScienceOn
|
60 |
Park, J. and Levin, V., 2002. Seismic Anisotropy: Tracing Plate Dynamics in the Mantle. Science, 296, 485-489.
DOI
ScienceOn
|
61 |
Park, M., Jung, H., and Kil, Y., 2012. Lattice preferred orientation of olivine and orthopyroxene in spinel peridotites from the Rio Grande rift, New Mexico. Journal of Geophysical Research, submitted.
|
62 |
Raleigh, C.B. and Paterson, M.S., 1965. Experimental deformation of serpentinite and its tectonic implications. Journal of Geophysical Research, 70, 3965-3985.
DOI
|
63 |
Raterron, P., Chen, J., Li, L., Weidner, D., and Cordier, P., 2007. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature. American Mineralogist, 92, 1436-1445.
DOI
|
64 |
Savage, M.K., 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37, 65-106.
DOI
ScienceOn
|
65 |
Raterron, P., Chen, J.H., Geenen, T., and Girard, J., 2011. Pressure effect on forsterite dislocation slip systems: Implications for upper-mantle LPO and low viscosity zone. Phys. Earth Planet. Inter., 188, 26-36.
DOI
ScienceOn
|
66 |
Ringwood, A.E., 1970. Phase transformations and the constutution of the mantle. Phys. Earth Planet. Inter., 3, 109-155.
DOI
ScienceOn
|
67 |
Russo, R.M. and Silver, P.G., 1994. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science, 263, 1105-1111.
DOI
ScienceOn
|
68 |
Sawaguchi, T., 2004. Deformation history and exhumation process of the horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 379, 109-126.
DOI
ScienceOn
|
69 |
Scholz, C.H., 2002. The Mechanics of earthquakes and faulting. Cambridge.
|
70 |
Silver, P.G., 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Annual Review of Earth and Planetary Sciences, 24, 385.
DOI
ScienceOn
|
71 |
Skemer, P., Katayama, I., and Karato, S.I., 2006. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water. Contrib. Mineral. Petrol., 152, 43-51.
DOI
|
72 |
Skemer, P., Warren, J.M., Kelemen, P.B., and Hirth, G., 2010. Microstructural and rheological evolution of a mantle shear zone. Journal of Petrology, 51, 43-53.
DOI
ScienceOn
|
73 |
Smith, G.P., Wiens, D.A., Fischer, K.M., Dorman, L.M., Webb, S.C., and Hildebrand, J.A., 2001. A complex pattern of mantle flow in the Lau backarc. Science, 292, 713-716.
DOI
ScienceOn
|
74 |
Van der Pluijm, B.A., and Marshak, S., 2004. Earth structure. Norton.
|
75 |
Soustelle, V., Tommasi, A., Demouchy, S., and Ionov, D.A., 2009. Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. Journal of Petrology, 51, 363-394.
|
76 |
Tasaka, M., Michibayashi, K., and Mainprice, D., 2008. B-type olivine fabrics developed in the fore-arc side of the mantle wedge along a subducting slab. Earth and Planetary Science Letters, 272, 747-757.
DOI
ScienceOn
|
77 |
Tommasi, A., Vauchez, A., and Ionov, D.A., 2008. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth and Planetary Science Letters, 272, 65-77.
DOI
ScienceOn
|
78 |
Wallace, P.J., 1998. Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophysical Research Letters, 25, 3639-3642.
DOI
|
79 |
Xu, Z.Q., Wang, Q., Ji, S.C., Chen, J., Zeng, L.S., Yang, J.S., Chen, F.Y., Liang, F.H., and Wenk, H.R., 2006. Petrofabrics and seismic properties of garnet peridotite from the UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab. Tectonophysics, 421, 111-127.
DOI
ScienceOn
|
80 |
Zhang, S.Q. and Karato, S., 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375, 774-777.
DOI
|