Browse > Article

Oxygen and Hydrogen Isotopic Compositions of the Hwacheon Granite  

Park Young-Rok (강원대학교 지질학과)
Ko Bokyun (강원대학교 지질학과)
Publication Information
The Journal of the Petrological Society of Korea / v.13, no.4, 2004 , pp. 214-223 More about this Journal
Abstract
Oxygen and hydrogen isotopic compositions of the Jurassic peraluminous Hwacheon granite were measured, and compared with those of other Jurassic peraluminous Daebo granite in Korea. $\delta$$\^$18/O values for quartz and feldspar of the Hwacheon granite range from 8.2 to 10.6 and 5.8 to 9.0$\textperthousand$, respectively. Whole rock $\delta$$\^$18/O values for banded biotite gneiss country rocks surrounding the Hwacheon granites range from 8.1 to 9.4$\textperthousand$. Whole rock and biotite $\delta$D Values for Hwacheon granite range from -84 to -113 and -107 to -113$\textperthousand$, respectively. Whole rock $\delta$D values for banded biotite gneiss country rocks range from -76 to -100$\textperthousand$. Both $\delta$$\^$18/O and $\delta$D values of the Hwacheon granite are characterized by low values compared to the 'normal' values for the fresh peraluminous granitic rocks. Low $\delta$$\^$18/O values of the Hwacheon granite resulted from fluid-rock interaction for a long period. Isotopic modelling result renders that a relatively low-$\delta$$\^$18/O fluid below -1$\textperthousand$ was involved in subsolidus isotopic exchange under a relatively high fluid/rock ratio (<-6). The fluid of meteoric origin has experienced a modification of oxygen isotopic composition as a result of fluid-rock interaction with the Hwacheon granite and surrounding metapelitic country rocks.
Keywords
peraluminous granite; oxygen isotope; hydrogen isotope; Hwacheon granite; hydrothermal alteration; subsolidus isotopic exchange;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cole, D.R. and Ohmoto, H., 1986, Kinetics of isotopic exchange at elevated temperatures and pressures. In: Valley, J.W., Taylor, H.P., O'Neil (eds.). Stable isotopes in high temperature geological processes, Rev. in Mineralogy, 16, Min. Soc. Am., 91, 41-90
2 Criss, R.E., 1999, Principles of stable isotope distribution, Oxford University Press, 254 p
3 Masi, U., O'Neil, J.R., and Kistler, R.S., 1981, Stable isotope systematics in Mesozoic granites of central and northern California and southwestern Oregon. Contributions to Mineralogy and Petrology, 76, 116-126
4 Nabelek, P.I., Russ-Nabelek, C., and Haeussler, G.T., 1992, Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota, Geochimica et Cosmochimica Acta, 56, 403-417
5 O'Neil, J.R. and Chappell, B.W., 1977, Oxygen and hydrogen isotope relations in the Berridale Batholith, southeastem Australia. Journal of the Geological Society of London, 133, 554-571
6 O'Neil, J. R., Shaw, S.E., Flood, R.H., 1977, Oxygen and hydrogen isotope compositions as indicators of granite gneiss in the New England Batholith, Australia. Contrib. Mineral. Petrol., 62, 313-328
7 Chappell, B. W. and White, A. J. R., 1974, Two contrasting granitic types. Pacific Geol., 8, 173-174
8 Park, K.-H. and Noh, J. H., 2000, Geochemical study on the genesis of Chuncheon nephrite deposits. Jour. Petrol. Soc. Korea, 9, 53-69
9 Park, K. H., Lee, B. J., Cho, D. L. and Kim, J. B., 1997, Explanatory text of the geological map of Hwacheon sheet (scale 1:50,000). Korea Inst. Geol. Mining and Materials
10 Zheng, Y.-F., 1993, Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta, 57, 1079-1091
11 Cho, D.-L., Suzuki, K., Adachi, M. and Chwae, U., 1996, A preliminary CHIME age determination of monazites from metamorphic and granitic rocks in the Gyeonggi massif, Korea. J. Earth and Planet. Sci. Nagoya univ., 43, 49-65
12 Taylor, H. P. Jr., 1977, Water/rock interactions and the origin of $H_2O$ in granitic batholiths. J. Geol. Soc. Lond., 133, 509-558
13 Lee, S. R. and Cho, M., 2003, Metamorphic and tectonic evolution of the Hwacheon granulite Complex, central Korea: Composite P-T path resulting from two distinct crustal-thickening events. Journal of petrology, 44, 197-225
14 Cathelineau, M. and Nieva, D., 1985, A chlorite solid solu-tion geothermeter. The Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 91, 235-244
15 Kim, K.H., 1991, Isotope Geology, Mineumsa, 552 p
16 Valley, J. W. and O'Neil, J. R., 1982, Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite. Nature, 301, 226-228
17 Wickham, S. M. and Taylor H. P. Jr, 1985, Stable isotopic evidence for large-scale seawater infiltration in a regional metamorphic terrane; the Trois Seigneurs Massif, Pyrenees, France. Contrib. Mineral. Petrol, 91, 122-137
18 Vennemann, T. W. and O'Neil, J. R., 1993, A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc regent. Chem. Geol. (Isotope Geosci. Sec.), 103, 227-234
19 Gregory, R.T., and Criss, R.E., 1986, Isotopic exchange in open and closed system. In: Valley, J.W., Taylor, H.P., O'Neil (eds.). Stable isotopes in high temperature geological processes, Rev. in Mineralogy, 16, Min. Soc. Am., 91, 91-127
20 Yui, T.-F. and Kwon, S.-T., 2002, Origin of a Dolomiterelated jade deposit at Chuncheon, Korea. Econ. Geol., 97, 593-601
21 Clayton, R. N. and Mayeda, T. K., 1963, The use of bro-mine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cos-mochim, Acta, 72, 43-52
22 Garlick, G.D. and Epstein, S., 1967, Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochim. Cosmochim. Acta 31, 181-214
23 Sagong H., Kwon, S.-T., Jeon, E.-Y. and Mertzman, S. A., 1997, Petrology and geochemistry of the Hwacheon granite. Journal of the Geological Society of Korea, 33, 99-110. (in Korean with English abstract)
24 Taylor, B.E., Eichelberger, J.C. and Westrich, H. R., 1983, Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature, 306, 541-545
25 Cho, D.-L. and Kwon S.-T., 1994, Hornblende geobarome-try of the Mesozoic genitoids in South Korea and the evolution of crustal thickness. Jour. Geol. Soc. Korea. 30, 41-61
26 Etheridge, M. A., Wall, V. J. and Vernon, R. H., 1983, The role of the fluid phase during regional metamorphism and deformation. Journal of Metamorphic Geology, 1, 205-226
27 Lee, D.E., Friedman, I., and Gleason, J.D., 1982, The oxygen isotope composition of granitoid and sedimentary rocks of the southern Snake Range, Nevada. Contributions to Mineralogy and Petrology, 79, 150-158
28 Brigham, R.H. and O'Neil, J.R., 1985, Genesis and evolu-tion of water in a two-mica pluton: a hydrogen isotope study. Chem Geol, 49, 159-177
29 Nabelek, P. I., O'Neil, J. R. and Papike, J.J., 1983, Vapor Phase exsolution as a controlling factor in hydrogen isotope variation in granitic rocks: the North Peak granitic stock, Utha. Earth Planet. Sci. Lett., 66, 137-150
30 Lee, S. R., Cho, M., Cheong, C.-S. and Park, K.-H., 1997, An early Proterozoic Sm-Nd age of mafic granulite from the Hwacheon area, South Korea. Geoscience Journal, 1, 136-142