Browse > Article
http://dx.doi.org/10.7847/jfp.2022.35.1.047

Distribution of resistance genes against lincomycin of pathogenic bacteria isolated from cultured olive flounder (Paralichthys olivaceus)  

Kim, Ye Ji (Department of Marine Life Sciences, Jeju National University)
Jun, Lyu Jin (Department of Marine Life Sciences, Jeju National University)
Lee, Young Juhn (Department of Marine Life Sciences, Jeju National University)
Ko, Ye Jin (Department of Marine Life Sciences, Jeju National University)
Han, So Ri (Fishcare laboratory)
Kim, Sung Hyun (Fishcare laboratory)
Jeong, Joon Bum (Department of Marine Life Sciences, Jeju National University)
Publication Information
Journal of fish pathology / v.35, no.1, 2022 , pp. 47-56 More about this Journal
Abstract
Lincomycin as one of the lincosamides antibiotics have been mainly used in human and livestock fields, but have not been used in aquaculture. In this study, the distribution of minimum inhibitory concentration (MIC) values against lincomycin and the detection of the macrolide-lincosamide-streptogramin (MLS) resistance gene were confirmed in bacterial pathogens isolated from cultured olive flounder (Paralichthys olivaceus). Of the 107 strains isolated from Jeju, 36 strains of Gram-positive bacteria and 71 strains of Gram-negative bacteria were identified. Most of Streptococcus spp. was found to have a MIC value of less than or equal to 0.5 ㎍/mL, and Edwardsiella piscicida was found to have a MIC value higher than 1,024 ㎍/mL. V. harveyi and V. alginolyticus mostly showed MIC values of 256 ㎍/mL, but V. scophthalmi displayed values of 8~64 ㎍/mL. In the detection of MLS resistance gene, erm(B) was detected in 9 strains of Streptococcus spp., and erm(A) was confirmed in one strain.
Keywords
Lincomycin; Olive flounder; Minimum inhibitory concentration (MIC); Macrolide-lincosamide-streptogramin (MLS) resistance gene;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Roberts, M.C.: Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in gram-negative bacteria. Curr. Drug Targets Infect. Disord., 4:207-215, 2004.   DOI
2 Roberts, M.C.: Environmental macrolide-lincosamide-streptogramin and tetracycline resistant bacteria. Front. Microbiol., 2: 40, 2011.   DOI
3 Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J. and Seppala, H.: Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob. Agents Chemother., 43:2823-2830, 1999.   DOI
4 Saenz, J.S., Marques, T.V., Barone, R.S.C., Cyrino, J.E.P., Kublik, S., Nesme, J., Schloter, M., Rath, S. and Vestergaard, G.: Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome, 7:24, 2019.   DOI
5 Seo, J.S., Jeon, E.J., Kwon, M.G., Hwang, J.Y., Jung, S.H., Kim, N.Y., Jee, B.Y. and Park, M.A.: Disease resistance against bacterial infection on treatment of hot-water extract with 6 herbal mixtures in olive flounder Paralichthys olivaceus. J. Fish Mar. Sci. Edu., 28:1715-1723, 2016.   DOI
6 Spizek, J. and Rezanka, T.: Lincomycin, clindamycin and their applications. Appl. Microbiol. Biotechnol., 64:455-464, 2004.   DOI
7 Griffin, M.J., Ware, C., Quiniou, S.M., Steadman, J.M., Gaunt, P.S., Khoo, L.S. and Soto, E.: Edwardsiella piscicida identified in the southeastern USA by gyrB sequence, species-specific and repetitive sequence-mediated PCR. Dis. Aquat. Org., 108:23-35, 2014.   DOI
8 Sutcliffe, J., Grebe, T., Tait-Kamradt, A. and Wondrack, L.: Detection of erythromycin-resistant determinants by PCR. Animicrob. Agents Chemother., 40:2562-2566, 1996.   DOI
9 Tenover, F.C.: Mechanisms of antimicrobial resistance in bacteria. Am. J. Med., 34:S3-S10, 2006.   DOI
10 Weinstein, M.P. and Lewis, J.S.: The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. J. Clinc. Microbiol., 58:e01864-19, 2020.
11 Ministry of Agriculture, Food and Rural Affairs, National antibiotic use and resistance monitoring-Animals, livestock and marine products. Retrieved from https://www.qia.go.kr/viewwebQiaCom.do?id=53852&type=50_1ndyjsy. 2020.
12 Chung, W.O., Werckenthin, C., Schwarz, S. and Roberts, M.C.: Host range of the ermF rRNA methylase gene in bacteria of human and animal origin. J. Antimicrob. Chemother., 43:5-14, 1999.   DOI
13 Kim, B.Y., Jeon, J.H., Choi, S.K., Shin, J.G., Lee, Y.H. and Kim, Y.M.: Use of a filtering process to remove solid waste and antibiotic resistance genes from effluent of a flow-through fish farm. Sci. Total Environ., 615:289-296, 2018.   DOI
14 Leclercq, R.: Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin. Infect. Dis., 34:482-492, 2002.   DOI
15 Achard, A., Guerin-Faublee, V., Pichereau, V., Villers, C. and Leclercq, R.: Emergence of macrolide resistance gene mph(B) in Streptococcus uberis and cooperative effects with rdmC-Like gene. Animicrob. Agents Chemother., 52:2767-2770, 2008.   DOI
16 Bozdogan, B., Berrezouga, L., Kuo, M.S., Yurek, D.A., Farley, K.A., Stockman, B.J. and Leclercq, R.: A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Animicrob. Agents Chemother., 43:925-929, 1999.   DOI
17 Korean Statistical Information Service (KOSIS). Retrieved from http://kosis.kr. 2022.
18 Werner, G., Hildebrandt, B. and Witte, W.: The newly described msrC gene is not equally distributed among all isolates of Enterococcus faecium. Animicrob. Agents Chemother., 45:3672-3673, 2001.   DOI
19 Chen, Y.M., Holmes, E.C., Chen, X., Tian, J.H., Lin, X.D., Qin, X.C., Gao, W.H., Liu, J., Wu, Z.D. and Zhang, Y.Z.: Diverse and abundant resistome in terrestrial and aquatic vertebrates revealed by transcriptional analysis. Sci. Rep., 10:18870, 2020.   DOI
20 Cho, Y.R., Kim, H.S., Kim, S.K., Kim, S.R., Hur, Y.B. and Kim, J.H.: Bio-floc technology application in olive flounder, Paralichthys olivaceus aquaculture according to the difference of closed recirculating systems. Korean J. Environ. Biol., 37:129-135, 2019.   DOI
21 Hwang, S.D., Jo, D.H., Cho, M.Y., Jee, B.Y., Park, M.A. and Park, C.I.: Application of water-soluble tetrazolium salt for development of rapid antimicrobial susceptibility testing methods. J. Fish. Pathol, 28:71-78, 2015.   DOI
22 Haenni, M., Saras, E., Chaussiere, S., Treilles, M. and Madec, J.Y.: ermB-mediated erythromycin resistance in Streptococcus uberis from bovine mastitis. Vet. J., 189:356-358, 2011.   DOI
23 Hammerum, A.M., Jensen, L.B. and Aarestrup, F.M.: Detection of the satA gene and transferability of virginiamycin resistance in Enterococcus faecium from food-animals. FEMS Microbiol. Lett, 168:145-151, 1998.   DOI
24 Hung, S.W., Wang, S.L., Tu, C.Y., Tsai, Y.C., Chuang, S.T., Shieh, M.T., Liu, P.C. and Wang, W.S.: Antibiotic susceptibility and prevalence of erythromycin ribosomal methylase gene, erm(B) in Streptococcus spp.. Vet. J., 176:197-204, 2008.   DOI
25 Jee, B.Y., Min, J.G., Kim, T.J., Choi, J.S. and Park, S. M.: Research on sanitation control for an HACCP application for a flatfish (Paralichthys olivaceus) aquaculture farm. J. Fish Mar. Sci. Edu., 25:1179-1191, 2013.   DOI
26 Jung, Y.H., Shin, E.S., Kim, O., Yoo, J.S., Lee, K.M., Yoo, J.I., Chung, G.T. and Lee, Y.S.: Characterization of two newly identified genes, vgaD and vatG, conferring resistance to streptogramin a in Enterococcus faecium. Animicrob. Agents Chemother., 54:4744-4749, 2010.   DOI
27 Kim, H.J., Ryu, J.O., Lee, S.Y., Kim, E.S. and Kim, H.Y.: Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiol., 15:239, 2015.   DOI
28 Kim, H.Y., Lee I.S. and Oh, J.E.: Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea. Sci. Total Environ., 579:940-949, 2017.   DOI
29 Landoni, M.F. and Albarellos, G.: The use of antimicrobial agents in broiler chickens. Vet. J., 205:21-27, 2015.   DOI
30 Kwon, M.G., Lim, Y.J., Kim, M.S., Seo J.S. and Kim, D.H.: Epidemiological cut-off values generated for disc diffusion data from Photobacterium damselae. J. Fish Aquat. Sci., 49:838-844, 2016.
31 Lee, S.H., Jung, H.W., Jung, J.Y., Min, H.J., Kim, B.R., Park, C.G., Oh, J.E., Onoda, Y. and Satou, N.: Characteristics of occurrence of pharmaceuticals in the Nakdong river. J. Kor. Soc. Environ. Eng., 35:45-56, 2013.   DOI
32 Li, L., Sun, J., Liu, B., Zhao, D., Ma, J., Deng, H., Li, X., Hu, F., Liao, X. and Liu, Y.: Quantification of lincomycin resistance genes associated with lincomycin residues in waters and soils adjacent to representative swine farms in China. Front. Microbiol., 4:364, 2013.   DOI
33 Kim, M.S., Cho, J.Y. and Choi, H.S.: Identification of Vibrio harveyi, Vibrio ichthyoenteri, and Photobacterium damselae isolated from olive flounder Paralichthys olivaceus in Korea by multiplex PCR developed using the rpoB gene. Fish Sci., 80:333-339, 2014.   DOI
34 Societe Francaise de Microbiologie. Comite de l'Antibiogramme de la Societe Francaise de Microbiologie (CA-SFM) Recommandations Veterinaires. 2019.
35 Maes, D., Boyen, F., Haesebrouck, F. and Gautier-Bouchardon, A.V.: Antimicrobial treatment of Mycoplasma hyopneumoniae infections. Vet. J., 259:105474, 2020.
36 Park, Y.K., Nho, S.W., Shin, G.W., Park, S.B., Jang, H.B., Cha, I.S., Ha, M.A., Kim, Y.R., Dalvi, R.S., Kang, B.J. and Jung, T.S.: Antibiotic susceptibility and resistance of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). Vet. Microbiol., 136:76-81, 2009.   DOI
37 Li, Y., Fu, L., Li, X., Wang, Y., Wei, Y., Tang, J. and Liu, H.: Novel strains with superior degrading efficiency for lincomycin manufacturing biowaste. Ecotoxicol. Environ. Saf., 209:111802, 2021.   DOI
38 Lina, G., Quaglia, A., Reverdy, M.E., Leclercq, R., Vandenesch, F. and Etienne, J.: Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among Staphylococci. Antimicrob. Agents Chemother., 43:1062-1066, 1999.   DOI
39 Mehrtens, A., Licha, T. and Burke, V.: Occurrence, effects and behaviour of the antibiotic lincomycin in the agricultural and aquatic environment - A review. Sci. Total Environ., 778:146306, 2021.   DOI
40 National Institute of Fisheries Science (NIFS). Retrieved from https://www.nifs.go.kr/page?id=antibiotics_1_08. 2022.
41 Nonaka, L., Maruyama, F., Suzuki, S. and Masuda, M.: Novel macrolide-resistance genes, mef(C) and mph (G), carried by plasmids from Vibrio and Photobacterium isolated from sediment and seawater of a coastal aquaculture site. Lett. Appl. Microbiol., 61:1-6, 2015.   DOI
42 Normark, B.H. and Normark, S.: Evolution and spread of antibiotic resistance. J. Intern. Med., 252:91-106, 2002.   DOI
43 Pepi, M. and Focardi, S.: Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the mediterranean area. Int. J. Environ. Res. Public Health, 18:5723, 2021.   DOI
44 Luna, V.A., Cousin, S., JR, Whittington, W.L. and Roberts, M.C.: Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Animicrob. Agents Chemother., 44:2503-2506, 2000.   DOI
45 Woo, S.H., Kim, H.J., Lee, J.S., Kim, J.W. and Park, S.I.: Pathogenicity and classification of streptococci isolated from cultured marine fishes. J. Fish Pathol., 19:17-33, 2006.
46 Jang, H.M., Kim, Y.B., Choi, S.K., Lee, Y.H., Shin, S.G., Unno, T. and Kim, Y.M.: Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environ. Pollut., 233:1049-1057, 2018.   DOI
47 Thiang, E.L., Lee, C.W., Takada, H., Seki, K., Takei, A., Suzuki, S., Wang, A. and Bong, C.W.: Antibiotic residues from aquaculture farms and their ecological risks in Southeast Asia: a case study from Malaysia. Ecosyst. Health Sustain., 7: 1926337, 2021.   DOI