Browse > Article
http://dx.doi.org/10.7847/jfp.2021.34.2.149

Characterization of rock bream (Oplegnathus fasciatus) fin cells and its susceptibility to different genotypes of megalocytiviruses  

Jeong, Ye Jin (Department of Aquatic Life Medicine, Pukyong National University)
Kim, Young Chul (Pathology Division, National Institute of Fisheries Science)
Min, Joon Gyu (Department of Aquatic Life Medicine, Pukyong National University)
Jeong, Min A (Department of Aquatic Life Medicine, Pukyong National University)
Kim, Kwang Il (Department of Aquatic Life Medicine, Pukyong National University)
Publication Information
Journal of fish pathology / v.34, no.2, 2021 , pp. 149-159 More about this Journal
Abstract
Genus Megalocytivirus cause red sea bream iridoviral disease (RSIVD) and scale drop disease (SDD). Based on the phylogeny of the major capsid protein (MCP) and adenosine triphosphatase (ATPase) genes, megalocytiviruses except for SDD virus (SDDV) could be three different genotypes, red sea bream iridovirus (RSIV), infectious spleen and kidney necrosis (ISKNV), and turbot reddish body iridovirus (TRBIV). In this study, primary cells derived from the caudal fin of rock bream (Oplegnathus fasciatus) grew at 25℃ in Leibovitz's medium supplemented with 10% (v/v) fetal bovine serum and primocin (100 ㎍/mL). Rock bream fin (RBF) cells exhibited susceptibility to infections by different genotypes of megalocytiviruses (RSIV, ISKNV and TRBIV) with the appearance of cytopathic effects with an increase in the viral genome copy number. Furthermore, compared to grunt fin (GF) cells, even though 10 times lower number of RSIV genome copies were inoculated in RBF cells, viral genome copy number produced on RBF cells were 44 times higher than that of GF cells at 7 d post-inoculation. As the isolated RBF cells are sensitive to different genotypes of megalocytiviruses (RSIV, ISKNV and TRBIV), they can be used for future studies regarding in vitro viral infection and subsequent diagnosis.
Keywords
Rock bream; Primary cell; Megalocytivirus; Red sea bream iridoviral disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jeong, J. B., Jun, L. J., Yoo, M. H., Kim, M. S., Komisar, J. L. & Jeong, H. D. (2003). Characterization of the DNA nucleotide sequences in the genome of red sea bream iridoviruses isolated in Korea. Aquaculture, 220: 119-133.   DOI
2 Jung, S. J. & Oh, M. J. (2000). Iridovirus-like infection associated with high mortalities of striped beak-perch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the Korean peninsula. Journal of Fish Diseases, 23: 223-226.   DOI
3 Ku, C. C., Lu, C. H. & Wang, C. S. (2010). Establishment and characterization of a fibroblast cell line derived from the dorsal fin of red sea bream, Pagrus major (Temminck & Schlegel). Journal of Fish Diseases, 33, 187-196.   DOI
4 Kurita, J., Nakajima, K., Hirono, I. & Aoki, T. (1998). Polymerase chain reaction (PCR) amplification of DNA of red sea bream iridovirus (RSIV). Fish Pathology, 33: 17-23.   DOI
5 Kwon, W. J., Yoon, M. J., Jin, J. W., Kim, K. I., Kim, Y. C., Hong, S. & Jeong, H. D. (2020). Development and characterization of megalocytivirus persistently-infected cell cultures for high yield of virus. Tissue and Cell, 66: 101387.   DOI
6 Oh, M. J., Jung, S. J. & Kim, Y. J. (1999). Detection of RSIV (red sea bream iridovirus) in the cultured marine fish by the polymerase chain reaction. Journal of Fish Pathology, 12: 66-69.
7 OIE (World Organization for Animal Health) (2021). Manual of Diagnostic Tests for Aquatic Animal. Chapter 2.3.7. Red sea bream iridoviral disease. https://www.oie.int/fileadmin/Home/eng/Health_standards/aahm/current/2.3.07_RSIVD.pdf
8 Shi, C. Y., Wang, Y. G., Yang, S. L., Huang, J. & Wang, Q. Y. (2004). The first report of an iridovirus-like agent infection in farmed turbot, Scophthalmus maximus, in China. Aquaculture, 236: 11-25.   DOI
9 Yeh, S. W., Cheng, Y. H., Nan, F. N. & Wen, C.M. (2018). Characterization and virus susceptibility of a continuous cell line derived from the brain of Aequidens rivulatus (Gunther). Journal of Fish Diseases, 41, 635-641.   DOI
10 Xu, D., Lou, B., Bertollo, L. A. C. & de Bello Cioffi, M. (2013). Chromosomal mapping of microsatellite repeats in the rock bream fish Oplegnathus fasciatus, with emphasis of their distribution in the neo-Y chromosome. Molecular Cytogenetics, 6, 12.   DOI
11 He, J. G., Deng, M., Weng, S. P., Li, Z., Zhou, S. Y., Long, Q. X., Wang, X. Z. & Chan, S. M. (2001). Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology, 291: 126-139.   DOI
12 Butler, M. (2004) Animal cell culture and technology. Taylor & Francis.
13 Jin, J. W., Kim, Y. K., Hong, S., Kim, Y. C., Kwon, W. J. & Jeong, H. D. (2018). Identification and characterization of Megalocytivirus type 3 infection with low mortality in starry flounder, Platichthys stellatus, in Korea. Journal of World Aquaculture Society, 49: 229-239.   DOI
14 Jeong, J. B., Cho, H. J., Jun, L. J., Hong, S. H., Chung, J. K. & Jeong, H. D. (2008). Transmission of iridovirus from freshwater ornamental fish (pearl gourami) to marine fish (rock bream). Diseases of. Aquatic Organisms, 82: 27-36.   DOI
15 Kim, K. I., Lee, E. S., Do, J. W., Hwang, S. D., Cho, M., Jung, S. H., Jee, B. Y., Kwon, W. J. & Jeong, H. D. (2019). Genetic diversity of Megalocytivirus from cultured fish in Korea. Aquaculture, 509: 16-22.   DOI
16 Kurita, J. & Nakajima, K. (2012). Megalocytiviruses. Viruses, 4, 521-538.   DOI
17 Oh, S. Y. & Nishizawa, T. (2016). Establishment of rock bream Oplegnathus fasciatus embryo (RoBE-4) cells with cytolytic infection of red seabream iridovirus (RSIV). Journal of Virological Methods, 238: 1-5.   DOI
18 Wen, C.M., Lee, C.W., Wang, C.S., Cheng, Y.H. and Huang, H.Y. (2008) Development of two cell lines from Epinephelus coioides brain tissue for characterization of betanodavirus and megalocytivirus infectivity and propagation. Aquac, 278(1-4): 14-21.   DOI
19 de Groof, A., Guelen, L., Deijs, M., van der Wal, Y., Miyata, M., Ng, K. S., van Grinsven, L., Simmelink, B., Biermann, Y., Grisez, L., van Lent, J., de Ronde, A., Chang, S.F., Scherier, C. & van der Hoek, L. (2015). A Novel Virus Causes Scale Drop Disease in Lates calcarifer. PLoS Pathogens, 11: e1005074.   DOI
20 Dong, C., Weng, S., Shi, X., Xu, X., Shi, N. & He, J. (2008). Development of a mandarin fish Siniperca chuatsi fry cell line suitable for the study of infectious spleen and kidney necrosis virus (ISKNV). Virus Research, 135: 273-281.   DOI
21 He, J. G., Zeng, K., Weng, S. P & Chan, S. M. (2002). Experimental transmission, pathogenicity and physical-chemical properties of infectious spleen and kidney necrosis virus (ISKNV). Aquaculture, 204: 11-24.   DOI
22 Inouye, K., Yamano, K., Maeno, Y., Nakajima, K., Matsuoka, M., Wada, Y. & Sorimachi, M. (1992). Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathology, 27: 19-27.   DOI
23 Kawato, Y., Yamashita, H., Yuasa, K., Miwa, S. & Nakajima, K. (2017). Development of a highly permissive cell line from spotted knifejaw (Oplegnathus punctatus) for red sea bream iridovirus. Aquaculture, 473: 291-298.   DOI
24 Kim, K. I., Jin, J. W., Kim, Y. C. & Jeong, H. D. (2014). Detection and genetic differentiation of megalocytiviruses in shellfish, via high-resolution melting (HRM) analysis. Korean Journal of Fisheries and Aquatic Sciences, 47: 241-246.   DOI
25 Kim, G. H., Kim, M. J., Choi, H. J., Koo, M. J., Kim, M. J., Min, J. G. & Kim, K. I. (2021). Evaluation of a novel TaqMan probe-based real-time PCR assay for detection and quantitation of red sea bream iridovirus. Fisheries and Aquatic Sciences, 24: 351-359.   DOI
26 Chinchar, V. G., Hick, P., Ince, I. A., Jancovich, J. K., Marchang, R., Qin, Q., Subramanian, K., Waltzek, T. B., Whittington, R., Williams, T. & Zhang, Q. Y. (2017). ICTV virus taxonomy profile: Iridoviridae. Journal of General Virology, 97: 890-891.
27 Gardenia, L., Sukenda, S., Junior, M. Z., Lusiastuti, A. & Alimuddin, A. (2020). Development of primary cell culture from spleen of giant gourami Osphronemus goramy for propagation of giant gourami iridovirus (GGIV). Journal of Fish Diseases, 43: 829-838.   DOI
28 Imajoh, M., Sugiura, H. & Oshima, S. I. (2004). Morphological changes contribute to apoptotic cell death and are affected by caspase-3 and caspase-6 inhibitors during red sea bream iridovirus permissive replication. Virology, 322: 220-230.   DOI
29 Ito, T., Yoshiura, Y., Kamaishi, T., Yoshida, K. & Nakajima, K. (2013). Prevalence of red sea bream iridovirus among organs of Japanese amberjack (Seriola quinqueradiata) exposed to cultured red sea bream iridovirus. Journal of General Virology, 94: 2094-2101.   DOI